• Title/Summary/Keyword: closest pairs 질의

Search Result 2, Processing Time 0.019 seconds

Closest Pairs and e-distance Join Query Processing Algorithms using a POI-based Materialization Technique in Spatial Network Databases (공간 네트워크 데이터베이스에서 POI 기반 실체화 기법을 이용한 Closest Pairs 및 e-distance 조인 질의처리 알고리즘)

  • Kim, Yong-Ki;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.3
    • /
    • pp.67-80
    • /
    • 2007
  • Recently, many studies on query processing algorithms has been done for spatial networks, such as roads and railways, instead of Euclidean spaces, in order to efficiently support LBS(location-based service) and Telematics applications. However, both a closest pairs query and an e-distance join query require a very high cost in query processing because they can be answered by processing a set of POIs, instead of a single POI. Nevertheless, the query processing cost for closest pairs and e-distance join queries is rapidly increased as the number of k (or the length of radius) is increased. Therefore, we propose both a closest pairs query processing algorithm and an e-distance join query processing algorithm using a POI-based materialization technique so that we can process closest pairs and e-distance join queries in an efficient way. In addition, we show the retrieval efficiency of the proposed algorithms by making a performance comparison of the conventional algorithms.

  • PDF

Algorithm for Finding K-Nearest Object Pairs in Circular Search Spaces (순환검색공간에서 K-최근접객체 쌍을 찾는 알고리즘에 관한 연구)

  • Seon, Hwi-Joon;Kim, Hong-Ki
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 2012
  • The query of the K closest object pairs between two object sets frequently occurs at recently retrieval systems. The circular location property of objects should be considered for efficiently process queries finding such a K nearest object pair. In this paper, we propose the optimal algorithm finding the K object pairs which are closest to each other in a search space with a circular domain and show its performance by experiments. The proposed algorithm optimizes the cost of finding the K nearest object pairs by using the circular search distances which is much applied the circular location property.