• Title/Summary/Keyword: closed loop system

Search Result 1,430, Processing Time 0.027 seconds

Dynamic response analysis of closed loop control system for intelligent truss structures based on probability

  • Gao, W.;Chen, J.J.;Ma, H.B.;Ma, X.S.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2003
  • The dynamic response analysis of closed loop control system based on probability for the intelligent truss structures with random parameters is presented. The expressions of numerical characteristics of structural dynamic response of closed loop control system are derived by means of the mode superposition method, in which the randomness of physical parameters of structural materials, geometric dimensions of active bars and passive bars, applied loads and control forces are considered simultaneously. The influences of the randomness of them on structural dynamic response are inspected by several engineering examples and some significant conclusions are obtained.

Controller Auto-tuning Scheme using System Monitoring inFrequency Domain (주파수역에서 시스템 감시를 이용한 제어기 Auto-tuning기법)

  • 정유철;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.136-139
    • /
    • 2000
  • Controller refinement scheme to improve the performance of a conventional system automatically in frequency domain is proposed. The controller automatic tuning method features using experimental frequency responses of the conventional closed-loop system, the conventional controller, and the improved closed-Imp system; instead of poorly modeled plant due to non-linearities and disturbances. The improved closed-loop system characteristics is automatically acquired by the conventional closed-loop system characteristics and the proposed performance index in system bandwidth. And the proper controller is realized by least squares approximation in frequency domain. To testify the usefulness of the approach, experimental results of robot path-tracking control applied with various controllers is used, and then is analyzed with respect to a equivalent proportional controller. Experimental results and analytic results are well-matched.

  • PDF

An Auto Pole Shift Adaptive Control (자동 극점이동 적응제어)

  • Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.146-150
    • /
    • 1989
  • In the pole assignment strategy, the closed loop poles are placed at prespecified locations. The amount of control effort required is to some extent proportional to the distance of the proposed closed loop locations of the poles from their open loop locations. The poor choice of closed loop locations may result in Large control effort and it may nuke the system unstable. To overcome this problem, pole shift control strategy is described in this paper. The validity of the proposed control strategy is assured through some simulations.

  • PDF

Feedback Control for Expanding Range and Improving Lineraity of Microaccelerometers (가속도계의 동작범위 확장와 선형성 향상을 위한 피드백 제어)

  • Park, Yong-Hwa;Park, Sang-Jun;Choi, Byung-Doo;Ko, Hyoung-Ho;Song, Tae-Yong;Lim, Genu-Won;Huh, Kun-Soo;Park, Jahng-Hyon;Cho, Dong-il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1082-1088
    • /
    • 2004
  • This paer presents a feedback-controlled, MEMS-fabricated microaccelerometer($\mu$XL). The $\mu$XL has received much commercial attraction, but its performance is generally limited. To improve the open-loop performance, a feedback controller is designed and experimentally evaluated. The feedback controller is applied to the x/y-axis $\mu$XL fabricated by sacrificial bulk micromachining(SBM) process. Even though the resolution of the closed-loop system is slightly worse than open-loop system, the bandwidth, linearity, and bias stability are stability are significantly improved. The noise equivalent resolution of open-loop system is 0.615 mg and that of closed-loop system is 0.864 mg. The bandwidths of open-loop and closed-loop system are over 100Hz. The input range, non-linearity and bias stability are improved from $\pm10\;g\;to\;\pm18g$, from 11.1%FSO to 0.86%FSO, and from 0.221 mg to 0.128 mg by feedback control, respectively.

Tracking control for multi-axis system using two-degrees-of-freedom controller

  • Park, Ho-Joon;Lee, Je-Hee;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.380-384
    • /
    • 1996
  • This paper represents an adaptive position controller with the disturbance observer for multi-axis servo system. The overall control system consists of three parts : the position controller, the disturbance observer with free parameters and cross-coupled controller which enhances contouring performance by reducing errors. Using two-degrees-of freedom conception, we design the command input response and the closed loop characteristics independently. The servo system can improve the closed loop characteristics without affecting the command input response. The characteristics of the closed loop system is improved by suppressing disturbance torque effectively with the disturbance observer. Moreover, the cross-coupled controller enhances tracking performance. Thus total position control performance is improved. Finally, the performance of the proposed controller shows that it improves the contouring performance along with the reference trajectory in the XY-table.

  • PDF

Design of PID regulator for linear time invariant MIMO system with prescribed eigenstructure (지정된 고유구조를 갖는 선형 시불변 다입출력 시스템의 PID조정기의 설계)

  • 손승걸;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.86-89
    • /
    • 1986
  • This paper presents a design methodology for a PID regulator. The parameters of the PID regulator are determined through equivalent structure to the closed-loop system whose feedback gain assigns prescribed eigenvalues of the closed-loop system and minimizes a given performance index.

  • PDF

Power Closed-loop Control of Switched Reluctance Generator for High Efficiency Operation

  • Li, Zhenguo;Gao, Dongdong;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.397-403
    • /
    • 2012
  • This paper describes a control method of turn-on/off angles to improve the efficiency of the switched reluctance generator(SRG) with a power closed-loop control system, and the inner-loop of the system is current hysteresis control. The SRG control system is constituted by the PI power controller and the two-level current hysteresis controller. By measuring and analyzing the system losses of different reference powers, speeds and turn-on/off angles, selection strategy of optimal turn-on/off angles is discussed. The proposed method is simple, reliable, and easy to achieve.

Closed-loop Identification and Controller Design for a Converter (컨버터의 폐루프 식별 및 제어기 설계)

  • Yun, Kyong-Han;Lim, Yeon-Soo;Jin, Li-Hua;Kim, Jae-Jin;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1632-1633
    • /
    • 2007
  • This paper presents a new method of designing digital controller based on closed-loop identification of a pulse width modulation (PWM) converter system. We consider the control system structure which is composed of both current control loop and voltage control loop. The current controller can be designed independently of voltage loop. Whereas voltage controller can not do easily due to the PWM switching component which is nonlinear in nature. Furthermore, the control objective of inner loop is to track the sine wave of 60 Hz, but the outer loop shall maintain the constant DC voltage irrespective to load change. To systematically design outer loop controller, we propose a method finding linear approximate model of the nonlinear inner loop part including current controller by closed loop identification. Based on the identified model, we show that a simple digital voltage controller can be directly designed and it has good performance.

  • PDF

Disturbance estimation of optical disc by closed loop output estimator (페루프 외란 검출기를 통한 광디스크 외란 측정)

  • Park, Jin-Young;Chun, Chan-Ho;Jun, Hong-Gul;Lee, Moon-Noh;Hyunseok Yang;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1166-1171
    • /
    • 2001
  • The method for output disturbance estimation is proposed. In this method, output disturbance is estimated from the closed loop system dynamics using the output and control input signals. In the closed-loop output-disturbance estimator, precise system identification is required to reduce estimation error. The realization of estimator was done by the DSP board (DSPl103), and disturbance estimation in various environments was performed: change of rotation speed, media feature and spindle motor with (or without) auto-ball balancing system (ABS). From these experiments, the disturbance characteristics of ODD under various conditions are analyzed, and the desirable servo loop configuration based these results is proposed.

  • PDF

Enumeration of axial rotation

  • Yoon, Yong-San
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.85-93
    • /
    • 2014
  • In this paper, two procedures of enumerating the axial rotation are proposed using the unit sphere of the spherical rotation coordinate system specifying 3D rotation. If the trajectory of the movement is known, the integration of the axial component of the angular velocity plus the geometric effect equal to the enclosed area subtended by the geodesic path on the surface of the unit sphere. If the postures of the initial and final positions are known, the axial rotation is determined by the angular difference from the parallel transport along the geodesic path. The path dependency of the axial rotation of the three dimensional rigid body motion is due to the geometric effect corresponding to the closed loop discontinuity. Firstly, the closed loop discontinuity is examined for the infinitesimal region. The general closed loop discontinuity can be evaluated by the summation of those discontinuities of the infinitesimal regions forming the whole loop. This general loop discontinuity is equal to the surface area enclosed by the closed loop on the surface of the unit sphere. Using this quantification of the closed loop discontinuity of the axial rotation, the geometric effect is determined in enumerating the axial rotation. As an example, the axial rotation of the arm by the Codman's movement is evaluated, which other methods of enumerating the axial rotations failed.