• 제목/요약/키워드: clogging materials

검색결과 50건 처리시간 0.036초

지반내 세립토 유동에 대한 수치해석적 연구 (Numerical Study on Fine Migration in Geo-materials)

  • 신호성
    • 한국지반공학회논문집
    • /
    • 제34권11호
    • /
    • pp.33-41
    • /
    • 2018
  • 지반의 내부침식은 유체 흐름에 의하여 입자골격에 부착된 세립토가 이탈하는 현상이며, 지속적인 세립토의 유동은 지반구조물의 수리-역학적 특성을 약화시킨다. 본 논문은 세립토의 유동에 관한 지배방정식을 정립하고 수치해석 기법을 제안하였다. 공극내의 세립토는 액상의 세립토($c_e$), 조립토에 부착된 입자(${\sigma}_a$) 그리고 조립토골격에 폐색된 세립토(${\sigma}_s$)로 구분하여 상관계를 제시하였다. 이를 바탕으로 세립토의 유동과 공극수의 흐름에 대한 수리학적 지배방정식들과 유한요소 수식화를 제시하였다. 세립토의 이탈, 부착 그리고 공극막힘에 대한 구성 모델들을 제시하였으며, 실내 1차원 침식실험으로부터 모델변수를 도출하는 방법을 제안하였다. 그리고 세립토의 공극 막힘 현상에 의한 지반의 투수계수 변화에 대한 추정식을 제안하였다. 기존의 침식실험 결과에 대한 수치해석을 통하여 개발된 해석기법과 세립토 유동 모델의 적정성을 검증하였다.

The impact of corrosion on marine vapour recovery systems by VOC generated from ships

  • Choi, Yoo Youl;Lee, Seok Hee;Park, Jae-Cheul;Choi, Doo Jin;Yoon, Young Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.52-58
    • /
    • 2019
  • Marine emissions of Volatile Organic Compounds (VOCs) have received much attention because the International Maritime Organization (IMO) requires the installation of vapour emission control systems for the loading of crude oils or petroleum products onto ships. It was recently recognised that significant corrosion occurs inside these vapour emission control systems, which can cause severe clogging issues. In this study, we analysed the chemical composition of drain water sampled from currently operating systems to investigate the primary causes of corrosion in vapour recovery systems. Immersion and electrochemical tests were conducted under simulated conditions with various real drain water samples, and the impact of corrosion on the marine vapour recovery system was carefully investigated. Moreover, corrosion tests on alternative materials were conducted to begin identifying appropriate substitutes. Thermodynamic calculations showed the effects of environmental factors on the production of condensed sulphuric acid from VOC gas. A model of sulphuric acid formation and accumulation by the characteristics of VOC from crude oil and flue gas is suggested.

ASBR에 의한 고농도폐수의 혐기성처리 연구 (Study on the Treatability of High-Concetration Wastewater by ABBR)

  • 김종찬;김요용;김세진;정일현
    • 환경위생공학
    • /
    • 제10권1호
    • /
    • pp.98-105
    • /
    • 1995
  • In the treatment of wastewater or sewage plant sludge with high solid concentration, high rate digestion process in which heating and mixing occur at a time is mainly used, and in the case of wastewater containing solid matter below 1000mg/ℓ the recently developed AF or UASB is developed Recently and commonly utilized. But these processes have weakpoints such as clogging of packing media and need of long period of trial run after microorganism granulation. In this point of view, there are active researches on the ASBR( anaerobic sequence batch reaction ) that is capable of treating of organic matter with reactor that has no packing materials and controlling the inflow time, reaction time sedimentation time and outflow time by time control without loss of microorganisms. The objectives of this study are to evaluate the efficiency of ASBR process according to the reaction time, change of treated water quality and gas output rate in the treatment of wheat plant wastewater.

  • PDF

디지털 프린팅 공정을 위한 세라믹 안료의 미립화 거동 분석 (Micronization of Ceramic Pigments for Digital Ink-Jet Printing Process)

  • 이지현;황해진;권종우;김진호;황광택;한규성
    • 한국재료학회지
    • /
    • 제27권2호
    • /
    • pp.82-88
    • /
    • 2017
  • Ink-jet printing techniques with ceramic ink, which contains ceramic pigments as colorant, are in increasingly use in the ceramic industry. Generally, ceramic pigments that are produced by conventional method show diameters of several micrometers; these micrometer sized particles in the ink-jet printing process can cause undesirable behavior such as print head nozzle clogging. To prevent this problem, a particle size reduction process is required. In this study, CMYK (cyan, magenta, yellow, black) pigments were synthesized via solid state method. Each pigment particle was milled to submicron size by an attrition mill. The effects of micronizing on the morphology, mechanical property, crystal structure and color property of the CMYK ceramic pigments were investigated by field emission scanning electron microscopy (FE-SEM), particle size analysis (PSA), X-ray diffraction (XRD) and CIE $L^{\ast}a^{\ast}b^{\ast}$.

전기비저항과 투수계수 측정을 통한 celite가 가미된 필터의 투과 성능 모니터링 (Monitoring the performance of a celite-based filter by using electrical resistivity and permeability measurements)

  • 김규원;권태혁;조계춘
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.673-676
    • /
    • 2009
  • Non-point pollutants, which mainly originate from high traffic roads and rural areas, contaminate the environment by flowing into various rivers and lakes and thus are of interest as an environmental issue. Accordingly, efforts have been made to design and maintain efficient filter systems for the control of the non-point pollutants. Meanwhile, clay-type materials are widely used for the absorption of chemicals included in pollutants and the absorption performances of various clays have been reported in the literature. Thus, the present study proposes a non-destructive monitoring method for the performance of a clay-type filter using electrical resistivity measurement. A series of experimental tests is performed on celite-based particulate filters with infiltrating non-point source pollutants having the same characteristics as pollutants on high traffic roads. Each test measures permeability, resistivity of the filter materials and resistivity of the filtrated water. As the particulate filter materials filtrate pollutants and absorb heavy chemicals (e.g., $Cr^{6+}$, lead, nickel, among others), ionic concentration increases resulting as the electrical resistivity decrease. When the filter systems approach the end of their lifetime, the electrical resistivity of the filter material converges to a very low value due to lowered filter absorption efficiency. Hence, the electrical resistivity of the filtrated water also converges to a low value due to high concentrations of heavy metals. The permeability converges to a very low value because of significantly reduced porosity due to clogging and absorption of pollutants on the filter material. The experimental results show that electrical resistivity monitoring of filter materials is a promising approach to estimation of filter performance and its life expectancy.

  • PDF

Effect of variation of water retention characteristics due to leachate circulation in municipal solid waste on landfill stability

  • M. Sina Mousavi;Yuan Feng;Jongwan Eun;Boo Hyun Nam
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.141-154
    • /
    • 2023
  • This study investigated the effect of water retention characteristics between aged and fresh Municipal Solid Waste (MSW) on the stability of the landfill. A series of transient numerical modeling for the slope of an MSW landfill was performed considering the variation of water retention characteristics due to leachate circulation. Four different scenarios were considered in this analysis depending on how to obtain hydraulic conductivity and the aging degree of materials. Unsaturated hydraulic properties of the MSW used for the modeling were evaluated through modified hanging column tests. Different water retention properties and various landfill conditions, such as subgrade stiffness, leachate injection frequency, and gas and leachate collection system, were considered to investigate the pore water distribution and slope stability. The stability analyses related to the factor of safety showed that unsaturated properties under those varied conditions significantly impacted the slope stability, where the factor of safety decreased, ranging between 9.4 and 22%. The aged materials resulted in a higher factor of safety than fresh materials; however, after 1000 days, the factor of safety decreased by around 10.6% due to pore pressure buildup. The analysis results indicated that using fresh materials yielded higher factor of safety values. The landfill subgrade was found to have a significant impact on the factor of safety, which resulted in an average of 34% lower factor of safety in soft subgrades. The results also revealed that a failed leachate collection system (e.g., clogging) could result in landfill failure (factor of safety < 1) after around 298 days, while the leachate recirculation frequency has no critical impact on stability. In addition, the accumulation of gas pressure within the waste body resulted in factor of safety reductions as high as 24%. It is essential to consider factors related to the unsaturated hydraulic properties in designing a landfill to prevent landfill instability.

관개용 저수지 수질개선을 위한 접촉산화수로 (Channels Packed with Porous Media to Improve Water Quality for Irrigation Reservoirs)

  • 박병흔;장정렬;김영경;이광식;권순국
    • 한국환경농학회지
    • /
    • 제19권2호
    • /
    • pp.122-127
    • /
    • 2000
  • A stream purification system was applied to the upper reaches of the Masan Reservoir to improve the water quality. This system consisted of two channels which were constructed on both sides of the stream, one side packed with crushed gravels and the other with plastic filter media. The system operated under low pollutant concentrations and high hydraulic loadings during a dry season to avoid clogging of the filter media. Removal rate and efficiency of chemical oxygen demand (COD) in the channel packed with crushed gravel were $14.8g/m^3/d$ and 11.5%, and for the channel with plastic filter media, $50.1g/m^3/d$ and 13.5%, respectively. Removal efficiencies of total phosphorus (T-P) were 6.6% (gravel) and 10.0% (plastic media). These results indicated plastic filter media having relatively high specific surface areas were more efficient than crushed gravels in removing pollutants. However, due to low influent water quality during dry season, the removal efficiencies were low. The proportion of nitrate nitrogen to total nitrogen (T-N) of the inflow was high but, as the system operated under aerobic condition, nitrate nitrogen could not denitrified. Accordingly, total nitrogen was not attenuated with this system. To improve the reservoir water quality effectively, this system should be able to treat the storm runoff containing higher pollutant loadings. When the filter materials are clogged by the storm runoff instead of backwashing, it would be more efficient to replace them, Therefore, the use of natural materials which are light, easily obtaining and replaceable, and have high specific surface areas is recommended.

  • PDF

연마재 워터젯을 위한 노즐상태 모니터링 시스템 설계 (Nozzle Condition Monitoring System for Abrasive Waterjet Process)

  • 김정욱;김노원;김철민;김성렬;김현희;이경창
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.817-823
    • /
    • 2020
  • In recent, the machining of difficult-to-cut materials such as titanium alloys, stainless steel, Inconel, ceramic, glass, and carbon fiber reinforced plastics (CFRP) used in aerospace, automobile, medical industry is actively researched. Abrasive waterjet is a non-traditional processing method in which ultra-high pressure water and abrasive particles are mixed in a mixing chamber and shoot out jet through a nozzle, and removed by erosion due to collision with a material. In particular, the nozzle of the abrasive waterjet is one of the most important parts that affect the machining quality as with a cutting tool in general machining. It is very important to monitor the condition of the nozzle because the workpiece is uncut or the surface quality deteriorates due to wear, expanding of the bore, damage of the nozzle and clogging of the abrasive, etc. Therefore, in this paper, we propose a monitoring system based on Acoustic Emission(AE) sensor that can detect nozzle condition in real time during AWJ processing.

Temperature Analysis for Optimizing the Configuration of the Linear Cell

  • Choi Jong-Wook;Kim Sung-Cho;Kim Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.1089-1097
    • /
    • 2006
  • The market demand of display devices is drastically increasing in the information technology age. The research on OLED (Organic Light Emitting Diodes) display with the luminescence in itself is being more paid attention than LCD (Liquid Crystal display) with the light source from the back. The vapor deposition process is most essential in manufacturing OLED display. The temperature distribution of the linear cell in this process is closely related to securing the uniformity of organic materials on the substrate. This work analyzed the temperature distribution depending on the intervals between the crucible and the heating band as well as on the amount of the heat flux from the heating band. Moreover, the roles of the water jacket and the configuration of the cover within the linear cell were examined through the temperature analysis for six configurations of the linear cell. Under the above temperature analysis, the variations in the intervals and the amount of the heat flux were considered to have an effect on building the uniform temperature distribution within the crucible. It is predicted that the water jacket and the adequate configuration of the cover will prevent the blowout and clogging phenomena, respectively. The results can be used as the fundamental data for designing the optimal linear cell.

Physical Properties of Korean Earthenware Containers Affected by Soy Sauce Fermentation Use

  • Seo, Gyeong-Hee;Yun, Jung-Hyun;Chung, Sun-Kyung;Park, Woo-Po;Lee, Dong-Sun
    • Food Science and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.168-172
    • /
    • 2006
  • Soy sauce was fermented at $20^{\circ}C$ for 100 days in onggi containers (ethnic Korean earthenware) which had been fabricated using three different glazing treatments: unglazed, glazed only on the outside, and glazed on both surfaces. The changes in microstructure and permeability characteristics of onggi containers were examined after fermentation of soy sauce. The effect of repeated use of onggi containers on the fermentation was analyzed by the contact between an aqueous model solution and the onggi containers used once for soy sauce fermentation. The levels of reducing sugar and free amino acids produced from the dissolved starch and protein, respectively, in the solution were compared between the new and reused onggi containers. The moisture permeance and gas permeabilities of the onggi jars were progressively reduced with continuing use for soy sauce fermentation, probably due to clogging of micropores by solid materials. After having been used once for fermentation, the microbial cells and/or enzymes immobilized on the surface or in the micropores of the onggi containers seemed to contribute to accelerating the hydrolytic reactions of starch and protein.