• Title/Summary/Keyword: clinical pathway

Search Result 628, Processing Time 0.024 seconds

Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis

  • Ahn, Jun-Ho;Hwang, Sung-Hee;Cho, Hyun-Soo;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.302-310
    • /
    • 2019
  • Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PAN-THER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitorresistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.

Trifolium pratense induces apoptosis through caspase pathway in FaDu human hypopharynx squamous carcinoma cells

  • Lee, Seul Ah;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.44 no.3
    • /
    • pp.81-88
    • /
    • 2019
  • Trifolium pratense leaves (red clover) has been used in Oriental and European folk medicine for the treatment of whooping cough, asthma, and eczema, and is now being used to treat and alleviate the symptoms, such as hot flushes, cardiovascular health effects that occur in postmenopausal women. However, relatively little scientific data is available on the physiological activity of this plant. Therefore, in this study, we investigated the anti-cancer activity of T. pratense leaves using methanol extract of T. pratense leaves (MeTP) on human FaDu hypopharyngeal squamous carcinoma cells. MeTP inhibited the viability of FaDu cells by inducing apoptosis through the cleavage of procaspase-3, -7, and -9 and poly (adenosine diphosphate ribose-ribose) polymerase (PARP), downregulation of Bcl-2, and upregulation of Bax, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Live & dead assay, 4'6-diamidino-2-phenylindole stain, fluorescence-activated cell sorting analysis, and Western blot analysis. In addition, colony formation was slightly inhibited when FaDu cells were treated with a non-cytotoxic concentration (0.125 mg/mL) of MeTP and almost completely inhibited when cells were treated with 0.25 mg/mL MeTP. Collectively, these results indicate that MeTP induced cell apoptosis via caspase- and mitochondrial-dependent apoptotic pathways, and inhibited colony formation of cancer cells in FaDu human hypopharyngeal squamous carcinoma cells. These findings suggest MeTP should be considered for clinical development as a chemotherapeutic option in oral cancer.

Small Molecule-Based Strategy Promotes Nucleus Pulposus Specific Differentiation of Adipose-Derived Mesenchymal Stem Cells

  • Hua, Jianming;Shen, Ning;Wang, Jingkai;Tao, Yiqing;Li, Fangcai;Chen, Qixin;Zhou, Xiaopeng
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.661-671
    • /
    • 2019
  • Adipose tissue-derived mesenchymal stem cells (ADSCs) are promising for regenerating degenerated intervertebral discs (IVDs), but the low efficiency of nucleus pulposus (NP)-specific differentiation limits their clinical applications. The Sonic hedgehog (Shh) signaling pathway is important in NP-specific differentiation of ADSCs, and Smoothened Agonist (SAG) is a highly specific and effective agonist of Shh signaling. In this study, we proposed a new differentiation strategy with the use of the small molecule SAG. The NP-specific differentiation and extracellular matrix (ECM) synthesis of ADSCs were measured in vitro, and the regenerative effects of SAG pretreated ADSCs in degenerated IVDs were verified in vivo. The results showed that the combination of SAG and transforming growth factor-${\beta}3$ ($TGF-{\beta}3$) is able to increase the ECM synthesis of ADSCs. In addition, the gene and protein expression levels of NP-specific markers were increased by treatment with SAG and $TGF-{\beta}3$. Furthermore, SAG pretreated ADSCs can also improve the disc height, water content, ECM content, and structure of degenerated IVDs in vivo. Our new differentiation scheme has high efficiency in inducing NP-specific differentiation of ADSCs and is promising for stem cell-based treatment of degenerated IVDs.

MicroRNAs in Autoimmune Sjögren's Syndrome

  • Cha, Seunghee;Mona, Mahmoud;Lee, Kyung Eun;Kim, Dong Hee;Han, Kyudong
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.19.1-19.11
    • /
    • 2018
  • MicroRNAs (miRNAs), small non-coding RNAs, have been implicated in various diseases and cellular functions as microregulators of gene expression. Although the history of miRNA investigation in autoimmune $Sj{\ddot{o}}gren^{\prime}s$ syndrome (SjS) is fairly short, a substantial amount of data has already been accumulated. These findings clearly indicate potential clinical implications of miRNAs, such as autoantigen expression and autoantibody production, viral miRNAs regulating the calcium signaling pathway, and aberrant immune cell regulation and cytokine production. Research endeavors in the field are currently underway to select disease-specific diagnostic and prognostic biomarkers by utilizing different types of tissues or biological specimens of SjS patients. Various techniques for miRNA analysis with different stringencies have been applied, with the most recent one being next-generation sequencing. This review compiles and highlights differentially-expressed miRNAs in various samples collected from SjS patients and their potential implications in the pathogenesis of SjS. To facilitate the development of miRNA-targeted personalized therapy in the future, we urge more follow-up studies that confirm these findings and elucidate the immunopathological roles of differentially-expressed miRNAs. Furthermore, improved diagnostic criteria for the disease itself will minimize sampling errors in patient recruitment, preventing the generation of inconsistent data.

Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation

  • Kim, A-Reum;Sung, Jee Young;Rho, Seung Bae;Kim, Yong-Nyun;Yoon, Kyungsil
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.231-239
    • /
    • 2019
  • Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing $G_1$ cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.

Association Between Vertebrobasilar Insufficiency and Cervicogenic Headache: Hypothetical Approach Towards Etiopathogenesis of Headache

  • Kaur, Aninditya;Rakesh, N.;Reddy, Sujatha S.;Thomas, Nithin;Nagi, Ravleen;Patil, Deepa Jatti
    • Journal of Oral Medicine and Pain
    • /
    • v.45 no.4
    • /
    • pp.97-109
    • /
    • 2020
  • Purpose: Cervicogenic headache (CGH) is pain referred to the head/ face from the structures in vicinity of upper cervical spinal nerves via trigeminocervical pathway. Ponticulus Posticus (PP) and Elongated Styloid Process (ESP) are anatomical structures that cause compression of vasculature present around upper cervical nerve plexus. Recently, computational fluid dynamics (CFD) has shown to play an essential role in identification of these high-pressure zones in the brain. The aim of this research is to study the association of ESP and PP in patients with CGH and to develop a hypothesis by CFD to analyse vertebrobasilar insufficiency as a contributing factor in occurrence of CGH. Methods: Retrospective analysis of 4500 full skull CBCT scans was done for the presence of partial or complete PP and length of Styloid Process (SP). Research was divided into two phases; In first Preliminary Phase, 150 scans that showed the presence of PP and ESP were analysed, and only 134 patients gave consent to fill the questionnaire containing 96 question items pertaining to symptoms associated with CGH. In the second phase, simulation of Vertebral and Carotid Artery was done using Fluent 14.5 Software and by CFD, pressure distribution on arteries was obtained that helped to identify high pressure regions. Results: Both PP and ESP showed a statistically significant association with CGH (p<0.001). By CFD analysis, both steady and transient phases of simulation showed drop in pressure due to constriction of internal carotid and vertebral artery by ESP and PP respectively and were found to decrease the volume of blood reaching the brain, 0.12 /0.13 mL and 0.06 mL respectively. Conclusions: Our analysis proves ESP and PP as contributing factors towards CGH. Hence for proper diagnosis and management of headache disorders, clinicians should have adequate knowledge about these anatomical structures and their resulting clinical symptoms.

Inhibitory Effect of Persicaria perfoliata (L.) H. Gross on IgE Mediated Allergic Responses in RBL-2H3 Cells

  • Yoon, Hyun-Seo;Park, Chung-Mu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.163-169
    • /
    • 2020
  • Purpose : This study aimed to investigate the anti-allergic effect of Persicaria perfoliata water extract (PPWE) on IgE stimulated rat basophilic leukemia (RBL-2H3) cell line. Methods : P. perfoliata (L.) H. Gross has been used in traditional medicine as an anti-allergic agent, antipyretic, and diuretic and for respiratory disorders. To analyze the anti-allergic activity of PPWE, release of β-hexosaminidase in RBL-2H3 cells was estimated by enzyme linked immunosorbant assay (ELISA). Also, the cytotoxic effect of PPWE was identified by WST assay, and nuclear factor (NF)-κB and its upstream signaling molecules were assessed by western blot analysis. Results : PPWE treatment significantly attenuated β-hexosaminidase release in a dose dependent manner without any cytotoxicity. PPWE inhibited β-hexosaminidase activity by 38.4±1.2, 36.6±0.6, 32.5±2.2 and 26.5±1.2 at 500, 250, 100, and 50 ㎍/㎖ of PPWE, respectively, compared with the control group. In addition, an analysis of the expression level of NF-κB, an inflammation transcription factor, in RBL-2H3 cells upon IgE stimulation provided reults consistent with the results of β-hexosaminidase release. The phosphorylated status of upstream signaling molecules for transcription factor, mitogen activated protein kinases (MAPKs), was also analyzed. The results showed that PPWE treatment dose-dependently inhibited phosphorylation of extracellular regulatory kinase (ERK) and c-Jun N-terminal kinase (JNK). These results show that PPWE had a strong IgE-mediated degranulation inhibitory effect on RBL-2H3 cells. Conclusion : P. perfoliata ameliorated IgE-mediated allergic reaction via the modulation of MAPK and NF-κB signaling pathway in RBL-2H3 cells. These results indicate that P. perfoliata could be a potential candidate for a treatment strategy against various allergic disorders.

Electron Transfer to Hydroxylase through Component Interactions in Soluble Methane Monooxygenase

  • Lee, Chaemin;Hwang, Yunha;Kang, Hyun Goo;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.287-293
    • /
    • 2022
  • The hydroxylation of methane (CH4) is crucial to the field of environmental microbiology, owing to the heat capacity of methane, which is much higher than that of carbon dioxide (CO2). Soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily, is essential for the hydroxylation of specific substrates, including hydroxylase (MMOH), regulatory component (MMOB), and reductase (MMOR). The diiron active site positioned in the MMOH α-subunit is reduced through the interaction of MMOR in the catalytic cycle. The electron transfer pathway, however, is not yet fully understood due to the absence of complex structures with reductases. A type II methanotroph, Methylosinus sporium 5, successfully expressed sMMO and hydroxylase, which were purified for the study of the mechanisms. Studies on the MMOH-MMOB interaction have demonstrated that Tyr76 and Trp78 induce hydrophobic interactions through π-π stacking. Structural analysis and sequencing of the ferredoxin domain in MMOR (MMOR-Fd) suggested that Tyr93 and Tyr95 could be key residues for electron transfer. Mutational studies of these residues have shown that the concentrations of flavin adenine dinucleotide (FAD) and iron ions are changed. The measurements of dissociation constants (Kds) between hydroxylase and mutated reductases confirmed that the binding affinities were not significantly changed, although the specific enzyme activities were significantly reduced by MMOR-Y93A. This result shows that Tyr93 could be a crucial residue for the electron transfer route at the interface between hydroxylase and reductase.

Influence of Stimulus Polarity on the Auditory Brainstem Response From Level-Specific Chirp

  • Dzulkarnain, Ahmad Aidil Arafat;Salamat, Sabrina;Shahrudin, Fatin Amira;Jamal, Fatin Nabilah;Zakaria, Mohd Normani
    • Journal of Audiology & Otology
    • /
    • v.25 no.4
    • /
    • pp.199-208
    • /
    • 2021
  • Background and Objectives: No known studies have investigated the influence of stimulus polarity on the Auditory Brainstem Response (ABR) elicited from level-specific (LS) chirp. This study is important as it provides a better understanding of the stimulus polarity selection for ABR elicited from LS chirp stimulus. We explored the influence of stimulus polarity on the ABR from LS chirp compared to the ABR from click at 80 dBnHL in normal-hearing adults. Subjects and Methods: Nineteen adults with normal hearing participated. The ABRs were acquired using click and LS chirp stimuli using three stimulus polarities (rarefaction, condensation, and alternating) at 80 dBnHL. The ABRs were tested only on the right ear at a stimulus rate of 33.33 Hz. The ABR test was stopped when the recording reached the residual noise level of 0.04 μV. The ABRs amplitudes, absolute latencies, inter-peak latencies (IPLs), and the recorded number of averages were statistically compared among ABRs at different stimulus polarities and stimuli combinations. Results: Rarefaction polarity had the largest ABR amplitudes and SNRs compared with other stimulus polarities in both stimuli. There were marginal differences in the absolute latencies and IPLs among stimulus polarities. No significant difference in the number of averages required to reach the stopping criteria was found. Conclusions: Stimulus polarities have a significant influence on the ABR to LS chirp. Rarefaction polarity is recommended for clinical use because of its larger ABR peak I, III, and V amplitudes than those of the other stimulus polarities.

Helicobacter pylori-Induced Progranulin Promotes the Progression of the Gastric Epithelial Cell Cycle by Regulating CDK4

  • Ren, Zongjiao;Li, Jiayi;Du, Xianhong;Shi, Wenjing;Guan, Fulai;Wang, Xiaochen;Wang, Linjing;Wang, Hongyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.844-854
    • /
    • 2022
  • Helicobacter pylori, a group 1 carcinogen, colonizes the stomach and affects the development of stomach diseases. Progranulin (PGRN) is an autocrine growth factor that regulates multiple cellular processes and plays a tumorigenic role in many tissues. Nevertheless, the mechanism of action of PGRN in gastric cancer caused by H. pylori infection remains unclear. Here, we investigated the role of PGRN in cell cycle progression and the cell proliferation induced by H. pylori infection. We found that the increased PGRN was positively associated with CDK4 expression in gastric cancer tissue. PGRN was upregulated by H. pylori infection, thereby promoting cell proliferation, and that enhanced level of proliferation was reduced by PGRN inhibitor. CDK4, a target gene of PGRN, is a cyclin-dependent kinase that binds to cyclin D to promote cell cycle progression, which was upregulated by H. pylori infection. We also showed that knockdown of CDK4 reduced the higher cell cycle progression caused by upregulated PGRN. Moreover, when the PI3K/Akt signaling pathway (which is promoted by PGRN) was blocked, the upregulation of CDK4 mediated by PGRN was reduced. These results reveal the potential mechanism by which PGRN plays a major role through CDK4 in the pathological mechanism of H. pylori infection.