DOI QR코드

DOI QR Code

Small Molecule-Based Strategy Promotes Nucleus Pulposus Specific Differentiation of Adipose-Derived Mesenchymal Stem Cells

  • Hua, Jianming (Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University) ;
  • Shen, Ning (Department of Rheumatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University) ;
  • Wang, Jingkai (Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University) ;
  • Tao, Yiqing (Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University) ;
  • Li, Fangcai (Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University) ;
  • Chen, Qixin (Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University) ;
  • Zhou, Xiaopeng (Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University)
  • Received : 2019.05.19
  • Accepted : 2019.08.21
  • Published : 2019.09.30

Abstract

Adipose tissue-derived mesenchymal stem cells (ADSCs) are promising for regenerating degenerated intervertebral discs (IVDs), but the low efficiency of nucleus pulposus (NP)-specific differentiation limits their clinical applications. The Sonic hedgehog (Shh) signaling pathway is important in NP-specific differentiation of ADSCs, and Smoothened Agonist (SAG) is a highly specific and effective agonist of Shh signaling. In this study, we proposed a new differentiation strategy with the use of the small molecule SAG. The NP-specific differentiation and extracellular matrix (ECM) synthesis of ADSCs were measured in vitro, and the regenerative effects of SAG pretreated ADSCs in degenerated IVDs were verified in vivo. The results showed that the combination of SAG and transforming growth factor-${\beta}3$ ($TGF-{\beta}3$) is able to increase the ECM synthesis of ADSCs. In addition, the gene and protein expression levels of NP-specific markers were increased by treatment with SAG and $TGF-{\beta}3$. Furthermore, SAG pretreated ADSCs can also improve the disc height, water content, ECM content, and structure of degenerated IVDs in vivo. Our new differentiation scheme has high efficiency in inducing NP-specific differentiation of ADSCs and is promising for stem cell-based treatment of degenerated IVDs.

Keywords

References

  1. Amaral, J.D., Silva, D., Rodrigues, C.M.P., Sola, S., and Santos, M.M.M. (2019). A novel small molecule p53 stabilizer for brain cell differentiation. Front. Chem. 7, 15. https://doi.org/10.3389/fchem.2019.00015
  2. Amirpour, N., Amirizade, S., Hashemibeni, B., Kazemi, M., Hadian, M., and Salehi, H. (2019). Differentiation of eye field neuroectoderm from human adipose-derived stem cells by using small-molecules and hADSC-conditioned medium. Ann. Anat. 221, 17-26. https://doi.org/10.1016/j.aanat.2018.08.002
  3. Andersson, G.B. (1999). Epidemiological features of chronic low-back pain. Lancet 354, 581-585. https://doi.org/10.1016/S0140-6736(99)01312-4
  4. Briscoe, J. and Small, S. (2015). Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142, 3996-4009. https://doi.org/10.1242/dev.129452
  5. Chen, J., Yan, W., and Setton, L.A. (2006). Molecular phenotypes of notochordal cells purified from immature nucleus pulposus. Eur. Spine J. 15 Suppl 3, S303-S311. https://doi.org/10.1007/s00586-006-0088-x
  6. Chen, J.K., Taipale, J., Young, K.E., Maiti, T., and Beachy, P.A. (2002). Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. U. S. A. 99, 14071-14076. https://doi.org/10.1073/pnas.182542899
  7. Chen, L., Liu, G., Li, W., and Wu, X. (2019). Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells following transfection with Indian hedgehog and sonic hedgehog using a rotary cell culture system. Cell. Mol. Biol. Lett. 24, 16. https://doi.org/10.1186/s11658-019-0144-2
  8. Ching, C.T., Chow, D.H., Yao, F.Y., and Holmes, A.D. (2004). Changes in nuclear composition following cyclic compression of the intervertebral disc in an in vivo rat-tail model. Med. Eng. Phys. 26, 587-594. https://doi.org/10.1016/j.medengphy.2004.03.006
  9. Choi, K.S., Cohn, M.J., and Harfe, B.D. (2008). Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev. Dyn. 237, 3953-3958. https://doi.org/10.1002/dvdy.21805
  10. Choi, K.S. and Harfe, B.D. (2011). Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs. Proc. Natl. Acad. Sci. U. S. A. 108, 9484-9489. https://doi.org/10.1073/pnas.1007566108
  11. Choi, K.S., Lee, C., and Harfe, B.D. (2012). Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs. Mech. Dev. 129, 255-262. https://doi.org/10.1016/j.mod.2012.07.003
  12. Colombier, P., Clouet, J., Boyer, C., Ruel, M., Bonin, G., Lesoeur, J., Moreau, A., Fellah, B.H., Weiss, P., Lescaudron, L., et al. (2016). TGF-beta1 and GDF5 act synergistically to drive the differentiation of human adipose stromal cells toward nucleus pulposus-like cells. Stem Cells 34, 653-667. https://doi.org/10.1002/stem.2249
  13. Cunha, C., Almeida, C.R., Almeida, M.I., Silva, A.M., Molinos, M., Lamas, S., Pereira, C.L., Teixeira, G.Q., Monteiro, A.T., Santos, S.G., et al. (2017). Systemic delivery of bone marrow mesenchymal stem cells for in situ intervertebral disc regeneration. Stem Cells Transl. Med. 6, 1029-1039. https://doi.org/10.5966/sctm.2016-0033
  14. Dahia, C.L., Mahoney, E., and Wylie, C. (2012). Shh signaling from the nucleus pulposus is required for the postnatal growth and differentiation of the mouse intervertebral disc. PLoS One 7, e35944. https://doi.org/10.1371/journal.pone.0035944
  15. Dahia, C.L., Mahoney, E.J., Durrani, A.A., and Wylie, C. (2009). Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging. Spine (Phila Pa 1976) 34, 456-462. https://doi.org/10.1097/BRS.0b013e3181913e98
  16. Eyring, E.J. (1969). The biochemistry and physiology of the intervertebral disk. Clin. Orthop. Relat. Res. 67, 16-28. https://doi.org/10.1097/00003086-196911000-00004
  17. Fontana, G., Thomas, D., Collin, E., and Pandit, A. (2014). Microgel microenvironment primes adipose-derived stem cells towards an NP cells-like phenotype. Adv. Healthc. Mater. 3, 2012-2022. https://doi.org/10.1002/adhm.201400175
  18. Gan, Y., Li, S., Li, P., Xu, Y., Wang, L., Zhao, C., Ouyang, B., Tu, B., Zhang, C., Luo, L., et al. (2016). A controlled release codelivery system of MSCs encapsulated in dextran/gelatin hydrogel with TGF-beta3-loaded nanoparticles for nucleus pulposus regeneration. Stem Cells Int. 2016, 9042019.
  19. Han, B., Zhu, K., Li, F.C., Xiao, Y.X., Feng, J., Shi, Z.L., Lin, M., Wang, J., and Chen, Q.X. (2008). A simple disc degeneration model induced by percutaneous needle puncture in the rat tail. Spine (Phila Pa 1976) 33, 1925-1934. https://doi.org/10.1097/BRS.0b013e31817c64a9
  20. Hara, E.S., Ono, M., Yoshioka, Y., Ueda, J., Hazehara, Y., Pham, H.T., Matsumoto, T., and Kuboki, T. (2016). Antagonistic effects of insulin and TGF-beta3 during chondrogenic differentiation of human BMSCs under a minimal amount of factors. Cells Tissues Organs 201, 88-96. https://doi.org/10.1159/000442411
  21. Huang, L., Yi, L., Zhang, C., He, Y., Zhou, L., Liu, Y., Qian, L., Hou, S., and Weng, T. (2018). Synergistic effects of FGF-18 and TGF-beta3 on the chondrogenesis of human adipose-derived mesenchymal stem cells in the pellet culture. Stem Cells Int. 2018, 7139485. https://doi.org/10.1155/2018/7139485
  22. Huang, Y.C., Leung, V.Y., Lu, W.W., and Luk, K.D. (2013). The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J. 13, 352-362. https://doi.org/10.1016/j.spinee.2012.12.005
  23. Jia, J., Wang, S.Z., Ma, L.Y., Yu, J.B., Guo, Y.D., and Wang, C. (2018). The differential effects of leukocyte-containing and pure platelet-rich plasma on nucleus pulposus-derived mesenchymal stem cells: implications for the clinical treatment of intervertebral disc degeneration. Stem Cells Int. 2018, 7162084. https://doi.org/10.1155/2018/7162084
  24. Jing, H., Zhang, X., Gao, M., Luo, K., Fu, W., Yin, M., Wang, W., Zhu, Z., Zheng, J., and He, X. (2019). Kartogenin preconditioning commits mesenchymal stem cells to a precartilaginous stage with enhanced chondrogenic potential by modulating JNK and beta-catenin-related pathways. FASEB J. 33, 5641-5653. https://doi.org/10.1096/fj.201802137RRR
  25. Komada, M. (2012). Sonic hedgehog signaling coordinates the proliferation and differentiation of neural stem/progenitor cells by regulating cell cycle kinetics during development of the neocortex. Congenit. Anom. (Kyoto) 52, 72-77. https://doi.org/10.1111/j.1741-4520.2012.00368.x
  26. Kopesky, P.W., Vanderploeg, E.J., Kisiday, J.D., Frisbie, D.D., Sandy, J.D., and Grodzinsky, A.J. (2011). Controlled delivery of transforming growth factor beta1 by self-assembling peptide hydrogels induces chondrogenesis of bone marrow stromal cells and modulates Smad2/3 signaling. Tissue Eng. Part A 17, 83-92. https://doi.org/10.1089/ten.tea.2010.0198
  27. Kregar Velikonja, N., Urban, J., Frohlich, M., Neidlinger-Wilke, C., Kletsas, D., Potocar, U., Turner, S., and Roberts, S. (2014). Cell sources for nucleus pulposus regeneration. Eur. Spine J. 23 Suppl 3, S364-S374. https://doi.org/10.1007/s00586-013-3106-9
  28. Lee, C.R., Sakai, D., Nakai, T., Toyama, K., Mochida, J., Alini, M., and Grad, S. (2007). A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat. Eur. Spine J. 16, 2174-2185. https://doi.org/10.1007/s00586-007-0475-y
  29. Lewis, C. and Krieg, P.A. (2014). Reagents for developmental regulation of Hedgehog signaling. Methods 66, 390-397. https://doi.org/10.1016/j.ymeth.2013.08.022
  30. Li, T., Longobardi, L., Myers, T.J., Temple, J.D., Chandler, R.L., Ozkan, H., Contaldo, C., and Spagnoli, A. (2013). Joint TGF-beta type II receptorexpressing cells: ontogeny and characterization as joint progenitors. Stem Cells Dev. 22, 1342-1359. https://doi.org/10.1089/scd.2012.0207
  31. Lotz, J.C. and Chin, J.R. (2000). Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine (Phila Pa 1976) 25, 1477-1483. https://doi.org/10.1097/00007632-200006150-00005
  32. Minogue, B.M., Richardson, S.M., Zeef, L.A., Freemont, A.J., and Hoyland, J.A. (2010). Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum. 62, 3695-3705. https://doi.org/10.1002/art.27710
  33. Okuma, M., Mochida, J., Nishimura, K., Sakabe, K., and Seiki, K. (2000). Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study. J. Orthop. Res. 18, 988-997. https://doi.org/10.1002/jor.1100180620
  34. Olivier, E.N., Marenah, L., McCahill, A., Condie, A., Cowan, S., and Mountford, J.C. (2016). High-efficiency serum-free feeder-free erythroid differentiation of human pluripotent stem cells using small molecules. Stem Cells Transl. Med. 5, 1394-1405. https://doi.org/10.5966/sctm.2015-0371
  35. Pattappa, G., Li, Z., Peroglio, M., Wismer, N., Alini, M., and Grad, S. (2012). Diversity of intervertebral disc cells: phenotype and function. J. Anat. 221, 480-496. https://doi.org/10.1111/j.1469-7580.2012.01521.x
  36. Qu, D., Zhu, J.P., Childs, H.R., and Lu, H.H. (2019). Nanofiber-based transforming growth factor-beta3 release induces fibrochondrogenic differentiation of stem cells. Acta Biomater. 93, 111-122. https://doi.org/10.1016/j.actbio.2019.03.019
  37. Richardson, S.M., Kalamegam, G., Pushparaj, P.N., Matta, C., Memic, A., Khademhosseini, A., Mobasheri, R., Poletti, F.L., Hoyland, J.A., and Mobasheri, A. (2016). Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods 99, 69-80. https://doi.org/10.1016/j.ymeth.2015.09.015
  38. Rutges, J., Creemers, L.B., Dhert, W., Milz, S., Sakai, D., Mochida, J., Alini, M., and Grad, S. (2010). Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration. Osteoarthritis Cartilage 18, 416-423. https://doi.org/10.1016/j.joca.2009.09.009
  39. Sakai, D. and Andersson, G.B. (2015). Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat. Rev. Rheumatol. 11, 243-256. https://doi.org/10.1038/nrrheum.2015.13
  40. Seifert, K., Buttner, A., Rigol, S., Eilert, N., Wandel, E., and Giannis, A. (2012). Potent small molecule Hedgehog agonists induce VEGF expression in vitro. Bioorg. Med. Chem. 20, 6465-6481. https://doi.org/10.1016/j.bmc.2012.08.026
  41. Stanton, B.Z. and Peng, L.F. (2010). Small-molecule modulators of the Sonic Hedgehog signaling pathway. Mol. Biosyst. 6, 44-54. https://doi.org/10.1039/B910196A
  42. Tam, V., Rogers, I., Chan, D., Leung, V.Y., and Cheung, K.M. (2014). A comparison of intravenous and intradiscal delivery of multipotential stem cells on the healing of injured intervertebral disk. J. Orthop. Res. 32, 819-825. https://doi.org/10.1002/jor.22605
  43. Tao, Y., Zhou, X., Liang, C., Li, H., Han, B., Li, F., and Chen, Q. (2015). TGFbeta3 and IGF-1 synergy ameliorates nucleus pulposus mesenchymal stem cell differentiation towards the nucleus pulposus cell type through MAPK/ERK signaling. Growth Factors 33, 326-336. https://doi.org/10.3109/08977194.2015.1088532
  44. Tsaryk, R., Gloria, A., Russo, T., Anspach, L., De Santis, R., Ghanaati, S., Unger, R.E., Ambrosio, L., and Kirkpatrick, C.J. (2015). Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration. Acta Biomater. 20, 10-21. https://doi.org/10.1016/j.actbio.2015.03.041
  45. Vaudreuil, N., Henrikson, K., Pohl, P., Lee, A., Lin, H., Olsen, A., Dong, Q., Dombrowski, M., Kang, J., Vo, N., et al. (2018). Photopolymerizable biogel scaffold seeded with mesenchymal stem cells: safety and efficacy evaluation of novel treatment for intervertebral disc degeneration. J. Orthop. Res. 37, 1451-1459.
  46. Vazin, T., Ashton, R.S., Conway, A., Rode, N.A., Lee, S.M., Bravo, V., Healy, K.E., Kane, R.S., and Schaffer, D.V. (2014). The effect of multivalent Sonic hedgehog on differentiation of human embryonic stem cells into dopaminergic and GABAergic neurons. Biomaterials 35, 941-948. https://doi.org/10.1016/j.biomaterials.2013.10.025
  47. Vos, T., Flaxman, A.D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J.A., Abdalla, S., Aboyans, V., et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2163-2196. https://doi.org/10.1016/S0140-6736(12)61729-2
  48. Wang, S.Z., Rui, Y.F., Lu, J., and Wang, C. (2014). Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies. Cell Prolif. 47, 381-390. https://doi.org/10.1111/cpr.12121
  49. Wang, Y., Han, C., Lu, L., Magliato, S., and Wu, T. (2013). Hedgehog signaling pathway regulates autophagy in human hepatocellular carcinoma cells. Hepatology 58, 995-1010. https://doi.org/10.1002/hep.26394
  50. Yang, W., Zheng, Y., Chen, J., Zhu, Q., Feng, L., Lan, Y., Zhu, P., Tang, S., and Guo, R. (2019). Preparation and characterization of the collagen/cellulose nanocrystals/USPIO scaffolds loaded kartogenin for cartilage regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 99, 1362-1373. https://doi.org/10.1016/j.msec.2019.02.071
  51. Yao, P.J., Petralia, R.S., and Mattson, M.P. (2016). Sonic hedgehog signaling and hippocampal neuroplasticity. Trends Neurosci. 39, 840-850. https://doi.org/10.1016/j.tins.2016.10.001
  52. Zhou, X., Tao, Y., Chen, E., Wang, J., Fang, W., Zhao, T., Liang, C., Li, F., and Chen, Q. (2018a). Genipin-cross-linked type II collagen scaffold promotes the differentiation of adipose-derived stem cells into nucleus pulposuslike cells. J. Biomed. Mater. Res. A 106, 1258-1268.
  53. Zhou, X., Tao, Y., Wang, J., Liang, C., Wang, J., Li, H., and Chen, Q. (2015). Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors 33, 23-30. https://doi.org/10.3109/08977194.2014.969420
  54. Zhou, X., Wang, J., Fang, W., Tao, Y., Zhao, T., Xia, K., Liang, C., Hua, J., Li, F., and Chen, Q. (2018b). Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus. Acta Biomater. 71, 496-509. https://doi.org/10.1016/j.actbio.2018.03.019
  55. Zhu, Y., Tan, J., Zhu, H., Lin, G., Yin, F., Wang, L., Song, K., Wang, Y., Zhou, G., and Yi, W. (2017). Development of kartogenin-conjugated chitosanhyaluronic acid hydrogel for nucleus pulposus regeneration. Biomater. Sci. 5, 784-791. https://doi.org/10.1039/C7BM00001D

Cited by

  1. Cell sources proposed for nucleus pulposus regeneration vol.4, pp.4, 2019, https://doi.org/10.1002/jsp2.1175
  2. The preconditioning of lithium promotes mesenchymal stem cell-based therapy for the degenerated intervertebral disc via upregulating cellular ROS vol.12, pp.1, 2019, https://doi.org/10.1186/s13287-021-02306-9