• Title/Summary/Keyword: climate variation

Search Result 649, Processing Time 0.027 seconds

A Study on the Economic Benefit of Urban Parking Lot Tree Shading -In the Case of University of California Davis Parking Lot- (도시 주차장내 수목그늘의 경제적 이익 연구 -미국 캘리포니아 데이비스 대학 주차장을 사례로-)

  • Jang Dong-Su;McPherson E. G.
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.98-108
    • /
    • 2006
  • The climate of urban area is an unstable type with considerable seasonal variation in precipitation wind speed, and temperature and it grows worse. Besides, ozone is a serious air pollutant in most of large cities. So worldwide, some of large cities are investing in forestry options to offset their climate problems, but lack of information has hindered comparisons of urban un cost effectiveness to other options. This research intends to study the economic benefits of tree shading of 19 parking lots in UCD campus. The economic benefits of tree shading are air conditioning savings, air quality, stormwater run-off, and other benefits. Especially, this study focuses how much the economic benefit of parking lot shading has been increased from 1995 to 2003 year by aerophoto. Some data on dimensions of parking lots and the number, size, tree species, and location of trees around each parking lot was inventoried. Two aerophotos(1995,2003) were used in order to analyze the increasement of tree canopy in 19 parking lots for 8 years. However, increasing coverage of trees and managing them for healthy growth would not be sufficient for avoiding adverse impacts by future climate change. Additional measures should be followed such as an increase of energy use efficiency and development of substitute energy. For example, coverage of trees help to save cooling energy by blocking solar radiation reaching parking cars and building structures through shading, and creating cool micro-climates through evapotranspiration. They also reduce heating demand by decreasing air infiltration and heat conduction out of the interior of buildings. Proper arrangement of vegetation over the parking lots can reduce cooling and heating costs. So proper planting design around hard space paving including species selection and location can significantly save cooling and heating energy. And a reduction in car and building's heating and cooling costs results in the reduction in energy demand which causes to emissions of air pollutants. Total increased tree canopy from 1995 to 2003 is $8,470.45m^2$ and the economic benefits is US$ 5,282.10. The economic benefit of one tree has been US$ 7.21 for 8 years. And an annually increased benefit is US$ 0.9 per a tree. If this kind of study is applied to studying the economic benefits of tree canopy in parking lots of Korea, it could result in guidelines of tree planting of parking lots. Because the trees selected for planting in parking lots were not suitable for an environment, the guidelines should contain a recommended list of trees. The guidelines should propose the shading percentage of parking lot when we plan a parking lot and contain the maintenance of trees in order to maximize the economic benefits of tree canopy.

Effects of Climate and Human Aquatic Activity on Early Life-history Traits in Fish (기후변화와 수상레저활동 인구변화가 어류의 초기생활사에 미치는 영향)

  • Lee, Who-Seung
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.395-408
    • /
    • 2013
  • Environmental condition can induce changes in early life-history traits in order to maximise the ecological fitness. Here I investigated how temperature change and variation in human aquatic activity/behaviour affect early life-history consequences in fish using a dynamic-state-dependent model. In this study, I developed a general fish's life-history model including three life-history states depend-ing on foraging activity, such as body mass, mass of reproductive tissue (i.e., gonadal development) and accumulated stress (i.e., cellular or physiological damage). I assumed the level of foraging activity maximises reproductive success-ultimately, fitness. The model predicts that growth rate, development of reproductive tissues and damage accumulation are greater in higher temperature whereas higher human aquatic activity rapidly reduced the growth rate and development of reproductive tissue and increased damage accumulation. While higher foraging activity in higher temperature is less affected by human aquatic activity, the foraging activity in lower temperature rapidly declined with human aquatic activity. Moreover, lower survival rate in higher temperature or human aquatic activity was independent on mortality rate due to human aquatic activity or mortality rate when foraging activity, respectively. However, the survival rate in lower temperature or human aquatic activity was dependent on these mortality rates. My findings suggest that including of early life-history traits in relation to climate-change and human aquatic activity on the analysis may improve conservation plan and health assessment in aquatic ecosystem.

Different Impacts of the Two Phases of El Niño on Variability of Warm Season Rainfall and Frequency of Extreme Events over the Han River Basin (서로 다른 형태의 엘니뇨에 따른 한강유역의 여름철 강우량과 극치강우의 변동특성 분석)

  • Yoon, Sun-Kwon;Kim, Jong-Suk;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.123-137
    • /
    • 2013
  • This study investigated impacts of the two different types of El Ni$\tilde{n}$o on summer rainfall (June-September) in the Han River and its sub-basins. The patterns of rainfall anomalies show a remarkable difference between conventional El Ni$\tilde{n}$o and El Ni$\tilde{n}$o Modoki years. During conventional El Ni$\tilde{n}$o years, it was found that the Han River basins show decreases in the seasonal rainfall totals with high variations (CV=0.4). In contrast, during El Ni$\tilde{n}$o Modoki years, distinct positive anomalies appear in the Han River basin with a relatively small variation (CV=0.23). In addition, 11 out of 30 sub-basins show significant above-normal rainfall in southern part of the Han River Basin. For El Ni$\tilde{n}$o Modoki years, the number of heavy rainy days exceeding 30 mm/day and 50 mm/day were 9.9-day and 5.4-day, respectively. Consequently, this diagnostic study confirmed that El Ni$\tilde{n}$o Modoki has significant impacts on the variability of summer rainfall over the Han River Basin. We expect the results presented here provide useful information for the stability of the regional water supply system, especially for basins like the Han River Basin showing relatively high variability in seasonal rainfall.

Water Supply Change Outlook for Geum River Basin Considering RCP Climate Change Scenario (RCP 기후변화 시나리오를 고려한 금강유역의 미래 용수공급 변화전망)

  • No, Sun-Hee;Jung, Kwan Sue;Park, Jin Hyeog;Ryoo, Kyong Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.505-517
    • /
    • 2013
  • In this study, water supply for Geum River Basin was calculated by regulating the future water supply of Dam with the future expected discharges. HadGEM2-AO, which is the climate change prediction model that KMA (Korea Meteorological Administration) recently introduced was used for this study. The data of weather stations within the Geum River basin was extracted with the new Greenhouse Gas RCP scenario. The runoff of Geum river basin was simulated using the ArcSWAT for the 1988~2010 period. After validating the model, the similarity of results between simulation and observation at the Yongdam Dam and Daecheong Dam was 92.25% and 95.40%, respectively, which shows a good agreement with observed data. As the result of analysis for the discharges, the discharges would increase 47.76% under the RCP4.5 scenario and 36.52% under the RCP8.5 scenario. Water balance analysis was conducted by the KModSim for predicting the water supply under the runoff variation. We analyzed the volume of water intake with national standard of water supply 95% by Dam Operation Manual. By the analysis under RCP4.5 scenario, $9.41m^3/s$, $24.82m^3/s$ of additional water supply is available on Yongdam Dam and Daecheong Dam. By the analysis under the RCP8.5 scenario, $6.48m^3/s$, $21.08m^3/s$ of additional water supply is available on Yongdam Dam and Daecheong Dam.

A Study on the Domestic Appllication of the Concept of Seed Transfer Zone in the U.S (미국 잠정종자이동구역(Seed transfer zone) 개념의 국내 적용 방안)

  • Kim, Chae-Young;Kim, Whee-Moon;Song, Won-Kyong;Choi, Jae-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.39-56
    • /
    • 2021
  • The seed zone is a map that describes the areas where plant material can be transferred with little risk for properly adapting to a new location. The seed zone study is largely divided into studies based on genetic data and studies based on climatic data. Can be. This study was conducted to establish a temporary domestic seed zone applicable to the entire Korean Peninsula and evaluate its possibility based on the US climate-based seed zone establishment methodology. The temporary seed zone was constructed in the same way as the US case by superimposing the data obtained by dividing the winter minimum temperature into 12 grades and the data obtained by dividing the annual heat: moisture index into 6 grades. As a result of the analysis, 65 temporary seed zones were formed throughout the Korean Peninsula, and the areas of the seed zones representing the smallest and largest areas were 3.0km2 and 29,423.0km2, respectively, and it was confirmed that they had an average size of about 5,064.9km2. Temporary seed zones applied in Korea show a pattern of changes in temperature according to the relatively horizontal forest zone, and it was confirmed that the area where the Baekdu-daegan ecological axis is located has a tendency to show lower dryness than other areas. This study applied the US climate-based seed zone methodology in Korea as a pilot, and confirmed the climatic similarity across the Korean Peninsula. Furthermore, it is expected to provide an optimal seed map that improves the success rate of restoration in the future by revising the seed zone grade suitable for the domestic environment in consideration of the results of this study and the possibility of seed adaptation to the field survey and environmental space.

The Impact of Meteorological Factors on Ulleung-do's Tourism Industry (울릉도의 기상이 지역 관광산업에 미치는 영향)

  • Gong, Sang-Min;Kim, In-Gyum;Kim, Sun;Jung, Jihoon;Kim, Baek-Jo
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.221-233
    • /
    • 2013
  • Due to the fact that the speed of climate change in Republic of Korea exceeds the global average speed, sound conservation and tourism strategies should be prepared based on the comparison between the meteorological factors and the number of tourists. In this context, almost 70 percent of the industries in Ulleung-do are closely related to tourism; hence the significance of tourism is increasing. The annual precipitation variation does not show remarkable fluctuation, and most precipitation has a tendency to fall in summer and autumn However, for the years 2010 and 2011, a different trend was exhibited with higher winter precipitation than any other periods. Precipitation intensity is usually stronger in May (in the morning), June (in the afternoon), and no big difference is shown between morning and afternoon precipitation from July to September. The number of tourist is compared to both the precipitation at Ulleung-do and the number of advisories and warnings in the East Sea of Korea using correlation analysis. The results demonstrate that the meteorological factors that reduce the number of tourist are precipitation and the number of advisories and warnings.

Quality Evaluation of Long-Term Shipboard Salinity Data Obtained by NIFS (국립수산과학원 장기 정선 관측 염분 자료의 정확성 평가)

  • PARK, JONGJIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.49-61
    • /
    • 2021
  • The repeated shipboard measurements that have been conducted by the National Institute of Fisheries Science (NIFS) for more than a half century, provide the valuable long-term hydrographic data with high spatial-temporal resolution. However, this unprecedent dataset has been rarely used for oceanic climate sciences because of its reliability issue. In this study, temporal variability of salinity error in the NIFS data was quantified by means of extremely small variability of salinity in the deep layer of the south-western East Sea, in order to contribute to studies on long-term variability of the East Sea. The NIFS salinity errors estimated on the isothermal surfaces of 1℃ have a remarkable temporal variation, such as ~0.160 g/kg in the year of 1961~1980, ~0.060 g/kg in 1981~1994,~0.020 g/kg in 1995~2002, and ~0.010 g/kg in 2003~2014 on average, which basically represent bias error. In the recent years, even though the quality of salinity has been improved, there still remain relatively large bias errors in salinity data presumably due to failure of salinity sensor managements, especially in 2011, 2013, and 2014. On the contrary, the salinity in the year of 2012 was very accurate and stable, whose error was estimated as about 0.001 g/kg comparable to the salinity sensor accuracy. Thus, as long as developing proper data quality control procedures and sensor management systems, I expect that the NIFS shipboard hydrographic data could have good enough quality to support various studies on ocean response to climate variabilities. Additionally, a few points to improve the current NIFS shipboard measurements were suggested in the discussion section.

Assessment of the Utility of Remote Sensing Techniques for Monitoring Compliance with Direct Payment Programs (직불제 이행점검 모니터링을 위한 원격탐사 기법 활용성 평가)

  • Hoyong Ahn;Jae-Hyun Ryu;Kyungdo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1467-1475
    • /
    • 2023
  • The public-interest direct payment program involves providing direct payments to agricultural producers and rural residents through public funds, premised on performing public functions such as environmental conservation, stable food supply, and maintaining rural communities via agricultural activities. Scientific estimation of crop cultivation areas and production levels is crucial for formulating agricultural policies linked to regulating food supply, which increasingly impacts the national economy. Conducting comprehensive on-site inspections for compliance monitoring of direct payment programs has shown very low efficiency in relation to budget and time. The expansion of areas subject to compliance monitoring and various challenges in on-site inspections necessitate streamlining current monitoring methods and devising effective strategies. As a solution, the application of Remote Sensing technology and spatial information utilization, allowing swift acquisition of necessary information for policies without overall on-site visits, is being discussed as an efficient compliance monitoring method. Therefore, this study evaluated the potential use of remote sensing for improving operational efficiency in monitoring compliance with public-interest direct payment programs. Using satellite images during farming seasons in Gimje and Hapcheon, vegetation indices and spatial variations were utilized to identify cultivated areas, presence of mixed crops, validated against on-site inspection data.

Analysis of Long-term Changes for Fisheries Production and Marine-Ecosystem Index in Jinhae Bay Considering Climate Change (진해만의 수산생산량과 해양생태계 지표의 장기 변동 및 기후변화 요인 분석)

  • Woo-Hee Cho;Kyunghoi Kim;In-Cheol Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.291-298
    • /
    • 2024
  • As an important fishing ground in the southern coast of Korea, Jinhae Bay is characterized by a high level of fisheries production. However, its marine-ecosystem has shifted owing to environmental changes such as industrial development and high water temperatures over the decades. This study analyzes the fisheries production, discards, mean trophic level, and fishing-in-balance index using annual fishing data from five regions surrounding Jinhae Bay for the period 2005-2022, as well as using additional forecasting trends by 2027 using ARIMA (Auto Regressive Intergrated Moving Average). The results shows, that the production in Goseong will decrease continuously by 2027, as compared with that in other areas. Additionally, byproduct management is considered necessary in Tongyeong. For the marine-ecosystem index, Tongyeong indicates stable catch ratio of large fish species and a fishing-in-balance exceeding 0. Finally, the annual catch variation for six pelagic fish species in Jinhae Bay by 2060 is estimated based on the IPCC climate-change scenario, in which the recent low level that decreased to approximately 20 thousand ton in early 2020 is projected to recover to approximately 40 thousand ton in the 2020s and 2040s, followed by an incremental decline by 2060.

Estimation of Climatological Standard Deviation Distribution (기후학적 평년 표준편차 분포도의 상세화)

  • Kim, Jin-Hee;Kim, Soo-ock;Kim, Dae-jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.93-101
    • /
    • 2017
  • The distribution of inter-annual variation in temperature would help evaluate the likelihood of a climatic risk and assess suitable zones of crops under climate change. In this study, we evaluated two methods to estimate the standard deviation of temperature in the areas where weather information is limited. We calculated the monthly standard deviation of temperature by collecting temperature at 0600 and 1500 local standard time from 10 automated weather stations (AWS). These weather stations were installed in the range of 8 to 1,073m above sea level within a mountainous catchment for 2011-2015. The observed values were compared with estimates, which were calculated using a geospatial correction scheme to derive the site-specific temperature. Those estimates explained 88 and 86% of the temperature variations at 0600 and 1500 LST, respectively. However, it often underestimated the temperatures. In the spring and fall, it tended to had different variance (e.g., increasing or decreasing pattern) from lower to higher elevation with the observed values. A regression analysis was also conducted to quantify the relationship between the standard deviation in temperature and the topography. The regression equation explained a relatively large variation of the monthly standard deviation when lapse-rate corrected temperature, basic topographical variables (e.g., slope, and aspect) and topographical variables related to temperature (e.g., thermal belt, cold air drainage, and brightness index) were used. The coefficient of determination for the regression analysis ranged between 0.46 and 0.98. It was expected that the regression model could account for 70% of the spatial variation of the standard deviation when the monthly standard deviation was predicted by using the minimum-maximum effective range of topographical variables for the area.