• 제목/요약/키워드: climate variation

검색결과 652건 처리시간 0.027초

기상자료를 이용한 남한지역 도별 쌀 생산량 추정 (Estimation of Rice Yield by Province in South Korea based on Meteorological Variables)

  • 허지나;심교문;김용석;강기경
    • 한국지구과학회지
    • /
    • 제40권6호
    • /
    • pp.599-605
    • /
    • 2019
  • 작물 생육에 영향 요소인 기상 변수들을 이용하여 우리나라 쌀 생산량(kg 10a-1)을 추정하였다. 이 연구는 기상 변수의 연 변동성을 기반으로 간단하지만 효과적인 통계 방법인 다중회귀모형을 이용하여 쌀 생산량에 대한 예측 가능성을 살펴보았다. 비균질적인 환경 조건의 특성을 고려하여, 연 쌀 생산량을 우리나라 도별로 추정하고 검증하였다. 기상청에서 제공하는 1986년부터 2018년까지 33년간 관측된 61개지점의 월 평균 기상 자료를 설명자료로 사용하였다. 11겹 교차검증(11-fold cross-validation)을 이용하여 추정된 쌀 생산량의 정확도를 추정하였다. 분석한 결과, 상관계수(0.7) 측면에서 간단한 과정으로도 도별 쌀 생산량의 시간적 변화를 잘 모의하였다. 또한 추정된 쌀 생산량은 0.7 kg 10a-1 (0.15%)의 평균 오차를 가지며, 관측의 공간적 특성을 잘 모의하였다. 이 방법은 적시에 농업기상 예측 정보를 얻는다면 쌀 생산량에 대한 유용한 정보를 사전에 얻을 수 있을 것으로 생각된다.

『각사등록』에 의한 조선시대 경기도지역 측우기 우량 관측자료 복원 및 분석(1830~1893) (Restoration and Analysis of Chugugi Rainfall Data by 『Gaksadeungnok』 for Gyeonggi Province During the Latter Part of the Joseon Dynasty (1830~1893))

  • 조하만;김상원;박진;김진아;전영신
    • 대기
    • /
    • 제23권4호
    • /
    • pp.389-400
    • /
    • 2013
  • Chugugi and Wootaeck rainfall data of Gyeonggi Province from 1830 to 1893 were restored from the "Gaksadeungnok" that is the government records between the central government and the local during the Joseon Dynasty. The restored data periods were 27, 10, 9 and 14 years for Kwangju, Suwon, Ganghwa and Gaeseong, and the total number of restored data was 655 for the Chugugi and 427 for the Wootaek, respectively. The variation pattern of monthly rainfall by Chugugi was investigated and it showed that the monthly rainfall more than 300 mm was recorded 25 times with 18 times in July, 5 times in August and 3 times in June. The cases of more than 500 mm were also recorded 8 times with the maximum 787 mm at the Kwangju in July 1862, showing the similar pattern to Seoul. The monthly mean rainfall for the Gyeonggi Province were 259 mm in July, 204 mm in August and 121 mm in June, which were about one third of that of Seoul. The correlation analysis between the Chugugi and Wootaek data was carried out to derive the quantitative values of Wootaek observations. It revealed that 1 'Ri' of Wootaek observation was equal to approximately 1 'Chon (Chugugi unit)' or 20 mm, while 1 'Seo' was very variable between 2 and 6 'Boon (Chugugi unit)' with the median value approximately 3 'Boon' or 6 mm. Recalculated Wootaek data showed that the monthly rainfall in July, August, and June were 289 mm, 154 mm, and 124 mm, respectively. Through this study, some features of the rainfall variation pattern during 1830~1893 were figured out, and quantitative interpretation of Wootaek data became possible based on the restored rainfall data from the "Gaksadeungnok". Though many pages of the book have been lost during the last hundreds years, "Gaksadeungnok" is still very meaningful and of practical use, for it contains plenty of the local data throughout the whole country during the latter part of Joseon Dynasty. Therefore, further studies are strongly recommended on the restoration of climate related data and on the climatic tendency of 19th century of Korean peninsular.

기후변화 시나리오를 이용한 광역 사면안정 해석(1): 방법론 (Large-Scale Slope Stability Analysis Using Climate Change Scenario (1): Methodologies)

  • 최병습;오성렬;이건혁;이기하;권현한
    • 한국지리정보학회지
    • /
    • 제16권3호
    • /
    • pp.193-210
    • /
    • 2013
  • 본 연구에서는 기상청에서 제공하는 공간해상도 27km 지역규모의 A1B 시나리오 기반의 RCM 자료와 비집수면적 개념을 도입한 GIS기반의 무한사면안정모형을 이용하여 전라북도 수계를 대상으로 미래 기후변화에 따른 사면안정 변동성을 평가하였다. 우선, 미래의 사면안정성 변동성 평가를 위하여 RCM 자료는 공간적으로 유역단위에서 강우관측소 지점단위로, 시간적으로 월단위에서 일단위 자료로 다운스케일링을 수행하였다. 또한, 무한사면안정모형의 중요 매개변수인 습윤지수 산정을 위하여 비집수면적 개념을 도입하여 격자기반의 습윤지수 정보를 획득하였으며 범용수치지형도, 정밀토양도, 임상도를 이용하여 지형 지질 임상학적 매개변수을 추출하여 GIS기반의 무한사면안정모형을 구축하였다. 이상의 미래 강우입력자료와 무한사면안정모형을 이용하여 현재(1971~2000)대비 미래(2010~2100)에 대한 사면안정 변동성을 평가하였다. 본 논문은 2편으로 구성되어 있으며, 제1편에서는 기후변화 시나리오에 따른 사면안정 변동성 해석을 위한 RCM자료의 가공 및 무한사면안정모형의 구축 등 방법론을 제시한다.

RCP 8.5 기후변화 시나리오의 강수량 변화에 따른 미래 PMPs의 전망 (Future PMPs projection according to precipitation variation under RCP 8.5 climate change scenario)

  • 이옥정;박명우;이정훈;김상단
    • 한국수자원학회논문집
    • /
    • 제49권2호
    • /
    • pp.107-119
    • /
    • 2016
  • 미래 기후변화 시나리오에 따르면 극한강우사상이 현재보다 더 강화될 것으로 전망되기 때문에, 기후변화의 영향이 추정절차에 반영되지 않는다면 가능최대강수량(PMPs)을 과소 추정하게 될 가능성이 매우 높다. 본 연구에서는 미래의 강우 변동이 반영된 PMPs가 추정된다. PMPs 계산을 위하여 수문기상학적 방법이 이용되며, 기존에 사용되어오던 지형영향비를 대신하여 산악전이비가 가능최대강수량의 산정에 적용된다. 미래 주요호우사상들로부터의 DAD는 기상청 RCM (HEDGEM3-RA) RCP 8.5 기후변화 시나리오의 일 강수자료를 기반으로 편의보정 및 이동평균 된 변화인자를 이용하여 간접적으로 산출된다. 미래 PMPs 산출결과, 현재보다 증가하는 것으로 나타났으며 증가율은 2045년 기준으로 평균적으로 연간 3 mm 정도 증가하는 것으로 예측되었으며, 먼 미래로 갈수록 PMPs의 증가율은 커졌으나 미래강우자료로부터 유발되는 PMPs 추정의 불확실성 또한 증가되고 있는 것으로 파악된다.

RCP 4.5와 8.5에 따른 기온 및 강수량변화를 반영한 서울 기후 건조/습윤특성 (Climate Aridity/humidity Characteristics in Seoul According to Changes in Temperature and Precipitation Based on RCP 4.5 and 8.5)

  • 임창수;김성엽
    • 한국수자원학회논문집
    • /
    • 제47권5호
    • /
    • pp.421-433
    • /
    • 2014
  • 본 연구에서는 과거 50년간(1961~2010)의 서울 기후관측지점의 월 및 연별 강수량대비 잠재증발산량의 비인 건조지수의 변화를 분석하고, 과거기간(1971~2000)의 건조지수 대비 기후변화시나리오(RCP 4.5, RCP 8.5)에 따른 미래기간별(2011~2040, 2041~2070, 2071~2100) 건조지수 변화율(%) 분석을 실시하였다. 또한 각기 다른 5개의 잠재증발산량 산정식(FAO P-M식, Penman식, Makkink식, Priestley-Taylor식, Hargreaves식)을 적용하여 잠재증발산량 산정식이 건조지수와 건조지수 변화율(%)에 미치는 영향을 분석하였다. 분석결과에 의하면 RCP 4.5와 8.5 모두에서 과거기간에 비해서 기후변화시나리오에 따른 미래기간에서 월별 강수량, 평균기온 그리고 잠재증발산량이 증가하였다. 또한 잠재증발산량은 겨울철이 여름철과 비교하여 과거기간 대비 미래기간에서 큰 증가를 보였으나, 건조지수는 강수량의 영향으로 잠재증발산량과 다른 양상을 보였다. 따라서 수자원관리 측면에서 미래기후변화에 따른 겨울철 증발산량의 증가에 따른 적절한 대응이 필요하다. 기후변화시나리오를 반영하여 산정된 미래기간의 월 및 연별 건조지수 값은 각기 다른 잠재증발산량 적용식에 따라서 큰 차이를 보였다. 하지만 과거기간대비 미래기간의 월 및 연별 건조지수 변화율(%) 양상은 적용된 잠재증발산량 산정식에 따라서 큰 차이가 없었다.

Evaluation of Feed Value of IRG in Middle Region Using UAV

  • Na, Sang-Il;Kim, Young-Jin;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • 한국토양비료학회지
    • /
    • 제50권5호
    • /
    • pp.391-400
    • /
    • 2017
  • Italian ryegrass (IRG) is one of the fastest growing grasses available to farmers. It offers rapid establishment and starts growing early in the following spring and has fast regrowth after defoliation. So, IRG can be utilized as the dominant/single species of grass used in a farming system, or to play a role as a large producing pasture and sacrificial paddock. The objective of this study was to develop the use of unmanned aerial vehicle (UAV) for the evaluation of feed value of IRG. For this study, UAV imagery was taken on the Nonsan regions two times during the IRG growing season. We analyzed the relationships between $NDVI_{UAV}$ and feed value parameters such as fresh matter yield, dry matter yield, acid detergent fiber (ADF), neutral detergent fiber (NDF), total digestible nutrient (TDN) and crude protein at the season of harvest. Correlation analysis between $NDVI_{UAV}$ and feed value parameters of IRG revealed that $NDVI_{UAV}$ correlated well with crude protein (r = 0.745), and fresh matter yield (r = 0.655). According to the relationship, the variation of $NDVI_{UAV}$ was significant to interpret feed value parameters of IRG. Eight different regression models such as Linear, Logarithmic, Inverse, Quadratic, Cubic, Power, S, and Exponential model were used to estimate IRG feed value parameters. The S and exponential model provided more accurate results to predict fresh matter yield and crude protein than other models based on coefficient of determination, p- and F-value. The spatial distribution map of feed values in IRG plot was in strong agreement with the field measurements in terms of geographical variation and relative numerical values when $NDVI_{UAV}$ was applied to regression equation. These lead to the result that the characteristics of variations in feed value of IRG according to $NDVI_{UAV}$ were well reflected in the model.

Differences in Temporal Variation of Ground Beetle Assemblages (Coleoptera: Carabidae) between Two Well-Preserved Areas in Mt. Sobaeksan National Park

  • Jung, Jong-Kook;Suk, Sang-Wook;Kim, Byeong-Young;Hong, EuiJeong;Kim, Youngjin;Jeong, Jong-Chul
    • Journal of Forest and Environmental Science
    • /
    • 제33권2호
    • /
    • pp.122-129
    • /
    • 2017
  • Understanding how future climate conditions will be impact on the biodiversity and species composition is important, because biodiversity becomes more important in environment assessment. To understand the biological changes including diversity and species composition over time (temporal variation within a year), the species diversity and composition of ground beetles were investigated in two well-preserved areas in the Sobaeksan National Park using pitfall traps. In addition, relationships between ground beetles and environmental variables were studied by considering temporal variation. We collected 2,146 ground beetle specimens representing 45 species, and individual-based rarefaction curves indicated that similar species richness was found between Geumseon Valley (GV) and Namcheon Valley (NV). The Bray-Curtis matrix comparisons between study sites were characterized by similar ground beetles sample heterogeneity, while temporal variations in abundance, species richness, and ${\beta}-diversity$ of ground beetles showed rather difference over time according to location of study sites. In GV site, minimum temperature was selected as the best predictor for abundance, species richness, and ${\beta}-diversity$ of ground beetles, while those relationships in NV site were more complicated. In conclusion, our study suggests that understanding the different response of ground beetles to climatic variables related to local habitat conditions is important to predict the effect of climate change on biological communities.

분포형 물수지 모델(WetSpass-M)을 이용한 삽교천 상류 유역에서의 월별 지하수 함양량 산정 (Evaluation of Groundwater Recharge using a Distributed Water Balance Model (WetSpass-M model) for the Sapgyo-cheon Upstream Basin)

  • 안효원;하규철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.47-64
    • /
    • 2021
  • In this study, the annual and monthly groundwater recharge for the Sapgyo-cheon upstream basin in Chungnam Province was evaluated by water balance analysis utilizing WetSpass-M model. The modeling input data such as topography, climate parameters, LAI (Leaf Area Index), land use, and soil characteristics were established using ArcGIS, QGIS, and Python programs. The results showed that the annual average groundwater recharge in 2001 - 2020 was 251 mm, while the monthly groundwater recharge significantly varied over time, fluctuating between 1 and 47 mm. The variation was high in summer, and relatively low in winter. Variation in groundwater recharge was the largest in July in which precipitation was heavily concentrated, and the variation was closely associated with several factors including the total amount of precipitation, the number of days of the precipitation, and the daily average precipitation. This suggests the extent of groundwater recharge is greatly influenced not only by quantity of precipitation but also the precipitation pattern. Since climate condition has a profound effect on the monthly groundwater recharge, evaluation of monthly groundwater recharge need to be carried out by considering both seasonal and regional variability for better groundwater usage and management. In addition, the mathematical tools for groundwater recharge analysis need to be improved for more accurate prediction of groundwater recharge.

Haines Index를 이용한 동아시아 지역 산불 확산 위험도 변화와 지표-대기 상호관계와의 연관성 연구 (Future Changes of Wildfire Danger Variability and Their Relationship with Land and Atmospheric Interactions over East Asia Using Haines Index)

  • 이미나;홍승범;박선기
    • 대기
    • /
    • 제23권2호
    • /
    • pp.131-141
    • /
    • 2013
  • Many studies have related the recent variations of wildfire regime such as the increasing number of occurrances, their patterns and timing changes, and the severity of their extreme cases with global warming. However, there are only a few numbers of wildfire studies to assess how the future wildfire regime will change in the interactions between land and atmosphere with climate change especially over East Asia. This study was performed to estimate the future changing aspect of wildfire danger with global warming, using Haines Index (HI). Calculated from atmospheric instability and dryness, HI is the potential of an existing fire to become a dangerous wildfire. Using the Weather Research and Forecasting (WRF) model, two separated 5-year simulations of current (1995~1999) and far future (2095~2099) were performed and analyzed. Community Climate System Model 3 (CCSM3) model outputs were utilized for the model inputs for the past and future over East Asia; future prediction was driven under the IPCC A1B scenario. The results indicate changes of the wildfire danger regime, showing overall decreasing the wildfire danger in the future but intensified regional deviations between north and south. The overall changes of the wildfire regime seems to stem from atmospheric dryness which is sensitive to soil moisture variation. In some locations, the future wildfire danger overall decreases in summer but increases in winter or fall when the actual fire occurrence are generally peaked especially in South China.

에어로졸의 광학 및 화학 특성 준실시간 모니터링을 통한 서울지역 시정 감쇄 분석 (Characteristics of Visibility Impairment by Semi-Continuous Optical and Chemical Property Monitoring of Aerosols in Seoul)

  • 박종성;박승명;송인호;신혜정;홍유덕
    • 한국대기환경학회지
    • /
    • 제31권4호
    • /
    • pp.319-329
    • /
    • 2015
  • The characteristics of aerosol light extinction were investigated by comparing measured and calculated extinction coefficient to understand the contribution of air pollutants on visibility impairment for data during 4 months (Jan~ April), 2014. The integrated nephelometer and aethalometer system were installed to measure the scattering and absorption coefficients of aerosol as well as BAM 1020, MARGA, semi-continuous OCEC analyzer, and online-XRF to calculate the extinction coefficient. The IMPROVE_2005 equation was used to determine the contributions of different chemical components on visibility impairment in $PM_{2.5}$ and $PM_{10}$ due to highest correlation with measured data. Sulfate, nitrate, and organic mass by carbon (OMC) of fine aerosol were the major contributors affecting on visibility impairment. Total contributions to light extinction were calculated as $631.0Mm^{-1}$ for the worst-case and $64.4Mm^{-1}$ for the best-case. The concentrations of aerosol component for the worst-case were 38.4 times and 45.5 times larger than those of the best-case for $(NH_4)_2SO_4$ and $NH_4NO_3$, respectively. At lower visibility condition, in which extinction coefficient was higher than $400Mm^{-1}$, extinction coefficient varied according to the relative humidity variation regardless of $PM_{2.5}$.