• Title/Summary/Keyword: climate mitigation

Search Result 376, Processing Time 0.023 seconds

Estimation and Mapping of Methane Emission from Rice Paddies in Gyunggi-do Using the Modified Water Management Scaling Factor (수정된 물관리보정인자를 적용한 경기도 논에서의 메탄 배출량 산정과 지도화)

  • Choi, Sung-Won;Kim, Hakyoung;Kim, Yeonuk;Kang, Minseok;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.320-326
    • /
    • 2016
  • From the perspective of climate-smart agriculture, it is becoming more critical to accurately estimate the amount of greenhouse gas emissions in the agricultural sector. In order to accurately ascertain the methane emissions from rice paddies, which account for a significant portion of the emission from the agricultural sector, we used the data from the 2010 Agriculture, Forestry and Fisheries Census, the revised water management scaling factors and their calculation program. In order to facilitate the analyses and understanding, the results were mapped using the ArcGIS software. The fact that the validation of the mapped values against the actual field measurements at one site showed little difference encourages the necessity to further this study. The administrative districts-based map of methane emission can help clearly identify the regional differences. Furthermore, the analysis of their major controlling factors will provide important scientific basis for the practical policy makings for methane mitigation.

Rhizoremdiation of Petroleum Hydrocarbon-contaminated Soils and Greenhouse Gas Emission Characteristics: A Review (유류오염토양 근권정화기술 동향 및 온실가스 배출 특성)

  • Seo, Yoonjoo;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.99-112
    • /
    • 2020
  • Rhizoremediation, based on the ecological synergism between plant and rhizosphere microorganisms, is an environmentally friendly method for the remediation of petroleum hydrocarbon-contaminated soils. In order to mitigate global climate change, it is necessary to minimize greenhouse gas emissions while cleaning-up contaminated soils. In rhizoremediation, the main factors affecting pollutant remediation efficiency and greenhouse gas emissions include not only pollutant and soil physicochemical properties, but also plant-microbe interactions, microbial activity, and addition of amendments. This review summarizes the development in rhizoremediation technology for purifying oil-contaminated soils. In addition, the key parameters and strategies required for rhizoremediation to mitigate climate change mediation are discussed.

Adsorption Characteristics and Kinetic Models of Ammonium Nitrogen using Biochar from Rice Hull in Sandy Loam Soil

  • Choi, Yong-Su;Kim, Sung-Chul;Shin, Joung-Du
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.413-420
    • /
    • 2015
  • Objective of this study was to investigate adsorption characteristics and kinetic models of $NH_4-N$ to biochar produced from rice hull in respective to mitigation of greenhouse gases. $NH_4-N$ concentration was analyzed by UV Spectrophotometer. For the experiment, the soil texture used in this study was sandy loam soil, and application rates of chemical fertilizer and pig compost were $420-200-370kgha^{-1}$ (N-P-K) and $5,500kgha^{-1}$ as recommended amount after soil test for corn cultivation. Biochar treatments were 0.2-5% to soil weight. Its adsorption characteristic was investigated with application of Langmuir isotherm, and pseudo-first order kinetic model and pseudo-second order kinetic model were used as kinetic models. Adsorption amount and removal rates of $NH_4-N$ were $39.3mg^{-1}$ and 28.0% in 0.2% biochar treatment, respectively. The sorption of $NH_4-N$ to biochar was fitted well by Langmiur model because it was observed that dimensionless constant ($R_L$) was 0.48. The maximum adsorption amount ($q_m$) and binding strength constant (b) were calculated as $4.1mgg^{-1}$ and $0.01Lmg^{-1}$ in Langmuir isotherm, respectively. The pseudo-second order kinetic model was more appropriate than pseudo-first order kinetic model for high correlation coefficient ($r^2$) of pseudo-second order kinetic model. Therefore, biochar produced from rice hull could reduce $N_2O$ by adsorbing $NH_4-N$ to biochar cooperated in sandy loam soil.

Future Directions and Perspectives on Soil Environmental Researches (토양환경분야 연구동향 및 전망)

  • Yang, Jae-E.;Ok, Yong-Sik;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1286-1294
    • /
    • 2011
  • This paper reviews the future directions and perspectives on the soil environmental researches in the 21 century. Previously, the principal emphasis of soil environmental researches had put on the enhancement of food and fiber productions. Beside the basic function of soil, however, the societal needs on soil resources in the 21st century have demands for several environmental and social challenges, occurring regionally or globally. Typical global issues with which soil science should deal include food security with increasing agronomic production to meet the exploding world population growth, adaptation and mitigation of climate change, increase of the carbon sequestration, supply of the biomass and bioenergy, securing the water resource and quality, protection of environmental pollution, enhancing the biodiversity and ecosystem health, and developing the sustainable farming/cropping system that improve the use efficiency of water and agricultural resources. These challenges can be solved through the sustainable crop production intensification (SCPI) or plant welfare concept in which soil plays a key role in solving the abovementioned global issues. Through implementation of either concept, soil science can fulfill the goal of the modern agriculture which is the sustainable production of crops while maintaining or enhancing the ecosystem function, quality and health. Therefore, directions of the future soil environmental researches should lie on valuing soil as an ecosystem services, translating research across both temporal and spatial scales, sharing and using data already available for other purposes, incorporating existing and new technologies from other disciplines, collaborating across discipline, and translating soil research into information for stakeholders and end users. Through the outcomes of these approaches, soil can enhance the productivity from the same confined land, increase profitability, conserve natural resource, reduce the negative impact on environment, enhance human nutrition and health, and enhance natural capital and the flow of ecosystem services. Soil is the central dogma, final frontier and new engine for the era of sustainability development in the $21^{st}$ century and thus soil environmental researches should be carried according to this main theme.

Analysis of GHG Reduction Potential on Road Transportation Sector using the LEAP Model - Low Carbon Car Collaboration Fund, Fuel Efficiency, Improving Driving Behavior - (LEAP 모형을 이용한 도로교통부문의 온실가스 감축잠재량 분석 - 저탄소차협력금제도, 연비강화, 운전행태개선을 중심으로 -)

  • Kim, Min wook;Yoon, Young Joong;Han, Jun;Lee, Hwa Soo;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • This study the efficiency of greenhouse gas reduction of 'low carbon car collaboration fund' and its alternative 'control of average fuel efficiency and greenhouse gas', and 'improving driving behavior' were analyzed by using LEAP, long term energy analysis model. Total 4 scenarios were set, baseline scenario, without energy-saving activity, 'low carbon car collaboration fund' scenario, 'fuel efficiency improving scenario', and 'improving driving behavior' scenario. The contents of analysis were forecast of energy demand by scenario and application as well as reduction of greenhouse gas emission volume, and the period taken for analysis was every 1 year during 2015~2030. Baseline scenario, greenhouse gas emission volume in 2015 would be 7,935,697 M/T and 13,081,986 M/T in 2030, increased 64.8%. The analysis result was average annual increase rate of 3.4%. The expected average annual increase rate of other scenarios was, 'low carbon car collaboration fund' scenario 1.7%, 'fuel efficiency improving' scenario 3.0%. and 'improving driving behavior' scenario 3.4%. and these were each 1.7%, 0.3%. 0.3% reduce from baseline scenario. The largest reduction was 'low carbon car collaboration fund' scenario, and there after were 'fuel efficiency improving scenario', and 'improving driving behavior' scenario.

A Study on Carbon Footprint and Mitigation for Low Carbon Apple Production using Life Cycle Assessment (전과정평가법을 이용한 사과의 탄소발생량 산정과 저감 연구)

  • Lee, Deog Bae;Jung, Sun Chul;So, Kyu Ho;Kim, Gun Yeob;Jeong, Hyun Cheol
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.189-197
    • /
    • 2014
  • Carbon footprint of apple was a sum of $CO_2$ emission in the step of manufacturing waste of agri-materials, and greenhouse gas emission during apple cultivation. Input amount of agri-materials was calculated on 2007 Income reference of Apple by Rural Development Administration. Emission factor of each agri- materials was based on domestic data and Ecoinvent data. $N_2O$ emission factor was based on 1996 IPCC guideline. Carbon dioxide was emitted 0.64 kg $CO_2$ to produce 1 kg apple fruit, and carbon dioxide was emitted 43.6% in the step of the manufacturing byproduct fertilizer, 1.3% in the step of the manufacturing single fertilizer, 4.7% in the step of the manufacturing composite fertilizer, 6.3% in the step of the manufacturing agri-chemicals, 14.6% in the step of the manufacturing fuel, 11.5% in the step of the fuel combustion, 17.7% of $N_2O$ emission by nitrogen application and 0.18% of disposal of agri-materials. It is needed for farmers to use fertilization recommendation based on soil testing (soil. rda.go.kr) because scientific fertilization is a major tools to reduce carbon dioxide of apple production. The fertilization recommendation could be also basic data in Measurable-ReporTablele-Verifiable (MRV) system for carbon footprint.

Analysis of the Joint Crediting Mechanism's Contribution to Japan's NDC (일본의 NDC 이행을 위한 공동감축실적이전 분석)

  • Kim, Youngsun
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.297-303
    • /
    • 2017
  • Considering Japan's Greenhouse Gas (GHG) emissions reduction target for Fiscal Year (FY) 2030, the Joint Crediting Mechanism (JCM) was analyzed in order to estimate its significant contribution to Japan's Nationally Determined Contribution (NDC) and check its availability as a new mechanism to achieve Korea's 2030 mitigation target of 11.3% using carbon credits from international market mechanisms. The total budget for JCM Model Projects (1.2 billion JPY/yr) and JCM REDD+ Model Projects (0.8 billion JPY/yr), which are expected to deliver at least 50% of issued credits to Japan, is estimated about 21.6 billion JPY by the year 2030. This budget is about one third of the purchase of carbon credits from international carbon markets. So far, JCM credits of $378tCO_2-eq$. have been allocated to Japan, which are about 77% of the total issued credit through five-JCM Model Projects implemented from the year 2014. It is expected that Japan will obtain about $0.5MtCO_2-eq$. credits more from 100-ongoing JCM Projects, which are only 1% of Japan's NDC target through JCM credits. With regard to regular issued credits from implemented projects, expected new issued credits from pipeline projects and the less budget for JCM implementation as compared to purchasing carbon credits, JCM credits can be reached a resonable level of Japan's NDC target of $50{\times}100MtCO_2-eq$. through JCM until FY 2030.

Long-term Estimation and Mitigation of Urban Development Impact on Watershed Hydrology (도시개발로 인한 장기 수문변화 예측과 저감 방안)

  • Jeon, Ji-Hong;Jang, Joo Bok;Kim, Tae-Dong;Choi, Donghyuk
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.419-428
    • /
    • 2018
  • This study is aimed at estimating and mitigating the impact of urban development on watershed hydrology for new town experienced with dramatical change of land use from rural to urban. The climate change scenario, representative concentration pathway (RCP), revealed direct response of runoff depth to precipitation, which increased until year 2100. The types of areas for urban use in addition to climate change affected the efficiencies of bioretention, applied as a low impact development (LID). Combining different areas for urban use suggested that a possible approach to mitigate the urban development impact on watershed hydrology by supplementing captured rainfall potential from area to area and attenuating peak discharge and retarding its time of concentration.

Improvement of EIA Associated with Greenhouse Gases Subject Matter for the Preparedness of Post-2020 (Post-2020에 연계한 온실가스 항목의 환경영향평가 개선 방안)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.483-491
    • /
    • 2019
  • In orderto cope with the post-2020 in accordance with the Paris Agreement, greenhouse gas (GHG)reduction in Environmental Impact Assessment (EIA) and its contributions to post-2020 were discussed. The 26 Environmental Impact Statement (EIS) administered by Geum-River Basin Environmental Office from 2010 to 2019 were analyzed for reviewing GHG mitigation measures. From the case study, it was found that the assessment of GHG emissions reduction and climate change adaptation were not appropriately performed. In this study, the following measures are proposed to improve the inappropriate assessment of 'GHG subject matter' associated with EIA according to post-2020, 1) allotment of enforced charge on GHG emission during the EIA process, 2) addition of the 'GHG subject matter' in 'establishing permissible discharge standards' which is based on "Act on the Integrated Control of Pollutant-discharging Facilities", and 3) the participation of stakeholders in early EIA stage for governance. Also the details on the EIA for the preparedness of post-2020 were discussed here.

Nature-based Solutions for Climate-Adaptive Water Management: Conceptual Approaches and Challenges (기후변화대응 물관리를 위한 자연기반해법의 개념적 체계와 정책적 과제)

  • Park, Yujin;Oh, Jeill
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.4
    • /
    • pp.177-189
    • /
    • 2022
  • Nature-based Solutions (NbS) are defined as practical and technical approaches to restoring functioning ecosystems and biodiversity as a means to address socio-environmental challenges and provide human-nature co-benefits. This study reviews NbS-related literature to identify its key characteristics, techniques, and challenges for its application in climate-adaptive water management. The review finds that NbS has been commonly used as an umbrella term incorporating a wide range of existing ecosystem-based approaches such as low-impact development (LID), best management practices (BMP), forest landscape restoration (FLR), and blue-green infrastructure (BGI), rather than being a uniquely-situated practice. Its technical form and operation can vary significantly depending on the spatial scale (small versus large), objective (mitigation, adaptation, naturalization), and problem (water supply, quality, flooding). Commonly cited techniques include green spaces, permeable surfaces, wetlands, infiltration ponds, and riparian buffers in urban sites, while afforestation, floodplain restoration, and reed beds appear common in non- and less-urban settings. There is a greater lack of operational clarity for large-scale NbS than for small-scale NbS in urban areas. NbS can be a powerful tool that enables an integrated and coordinated action embracing not only water management, but also microclimate moderation, ecosystem conservation, and emissions reduction. This study points out the importance of developing decision-making guidelines that can inform practitioners of the selection, operation, and evaluation of NbS for specific sites. The absence of this framework is one of the obstacles to mainstreaming NbS for water management. More case studies are needed for empirical assessment of NbS.