DOI QR코드

DOI QR Code

Rhizoremdiation of Petroleum Hydrocarbon-contaminated Soils and Greenhouse Gas Emission Characteristics: A Review

유류오염토양 근권정화기술 동향 및 온실가스 배출 특성

  • Seo, Yoonjoo (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 서윤주 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2019.11.25
  • Accepted : 2020.02.18
  • Published : 2020.06.28

Abstract

Rhizoremediation, based on the ecological synergism between plant and rhizosphere microorganisms, is an environmentally friendly method for the remediation of petroleum hydrocarbon-contaminated soils. In order to mitigate global climate change, it is necessary to minimize greenhouse gas emissions while cleaning-up contaminated soils. In rhizoremediation, the main factors affecting pollutant remediation efficiency and greenhouse gas emissions include not only pollutant and soil physicochemical properties, but also plant-microbe interactions, microbial activity, and addition of amendments. This review summarizes the development in rhizoremediation technology for purifying oil-contaminated soils. In addition, the key parameters and strategies required for rhizoremediation to mitigate climate change mediation are discussed.

유류 오염 토양을 환경친화적으로 정화하는 방법으로 식물과 근권미생물 사이의 생태적 상승작용(synergism)에 기반을 둔 rhizoremediation이 큰 주목을 받고 있다. 전지구적 문제인 기후변화에 대응하기 위해서는 오염 토양을 정화하는 과정에서 온실가스 배출량을 최소화할 수 있는 기후변화 대응 정화기술이 도입될 필요가 있다. 기후변화 대응 rhizoremediation 기술에서, 오염정화효율과 non-CO2 온실 가스 배출량에 영향을 미치는 주요인자는 오염물질 특성 및 토양의 물리화학적 특성 뿐 아니라, 식물-미생물 상호작용, 미생물 활성, 그리고 첨가제 및 강화제 첨가 여부로 구분할 수 있다. 본 총설에서는 유류 오염토양을 정화하기 위한 rhizoremediation 기술 개발 동향을 정리하고, 기후변화 대응 rhizoremediation 기술 개발 방향에 대해 고찰하였다.

Keywords

References

  1. Hussain I, Puschenreiter M, Gerhard S, Schoftner P, Yousaf S, Wang A, et al. 2018. Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environ. Exp. Bot. 147: 202-219. https://doi.org/10.1016/j.envexpbot.2017.12.016
  2. Varjani SJ. 2017. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223: 277-286. https://doi.org/10.1016/j.biortech.2016.10.037
  3. Ron EZ, Rosenberg E. 2014. Enhanced bioremediation of oil spills in the sea. Curr. Opin. Biotechnol. 27: 191-194. https://doi.org/10.1016/j.copbio.2014.02.004
  4. Aisien FA, Chiadikobi JC, Aisien ET. 2009. Toxicity assessment of some crude oil contaminated soils in the Niger delta. Adv. Mater. Res. 62-64: 451-455. https://doi.org/10.4028/www.scientific.net/AMR.62-64.451
  5. Hentati O, Lachhab R, Ayadi M, Ksibi M. 2013. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environ. Monit. Assess. 185: 2989-2998. https://doi.org/10.1007/s10661-012-2766-y
  6. Ramadass K, Megharaj M, Venkateswarlu K, Naidu R. 2015. Ecological implications of motor oil pollution: earthworm survival and soil health. Soil Biol. Biochem. 85: 72-81. https://doi.org/10.1016/j.soilbio.2015.02.026
  7. Fatima K, Imran A, Naveed M, Afzal M. 2017. Plant-bacteria synergism: An innovative approach for the remediation of crude oil-contaminated soils. Soil Environ. 36: 93-113. https://doi.org/10.25252/SE/17/51346
  8. Salanitro JP. 2001. Bioremediation of petroleum hydrocarbons in soil. Adv. Agron. 72: 53-105.
  9. Huang H, Tang J, Niu Z, Giesy JP. 2019. Interactions between electrokinetics and rhizoremediation on the remediation of crude oil-contaminated soil. Chemosphere 229: 418-425. https://doi.org/10.1016/j.chemosphere.2019.04.150
  10. Pant R, Pandey P, Kotoky R. 2016. Rhizosphere mediated biodegradation of 1,4-dichlorobenzene by plant growth promoting rhizobacteria of Jatropha curcas. Ecol. Eng. 94: 50-56. https://doi.org/10.1016/j.ecoleng.2016.05.079
  11. Logeshwaran P, Megharaj M, Chadalavada S, Bowman M, Naidu R. 2018. Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environ. Technol. Innov. 10: 175-193. https://doi.org/10.1016/j.eti.2018.02.001
  12. Liu PWG, Chang TC, Whang LM, Kao CH, Pan PT, Cheng SS. 2011. Bioremediation of petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift. Int. Biodeterior. Biodegr. 65: 1119-1127. https://doi.org/10.1016/j.ibiod.2011.09.002
  13. Cai B, Ma J, Yan G, Dai X, Li M, Guo S. 2016. Comparison of phytoremediation, bioaugmentation and natural attenuation for remediating saline soil contaminated by heavy crude. Biochem. Eng. J. 112: 170-177. https://doi.org/10.1016/j.bej.2016.04.018
  14. Nwinyi OC, Olawore YA. 2017. Biostimulation of spent engine oil contaminated soil using Ananas comosus and Solanum tuberosum peels. Environ. Technol. Innov. 8: 373-388. https://doi.org/10.1016/j.eti.2017.09.003
  15. Osterreicher-Cunha P, Vargas EA, Guimaraes JRD, Campos TMP, Nunes CMF, Costa A, et al. 2004. Evaluation of bioventing on a gasoline-ethanol contaminated undisturbed residual soil. J. Hazard. Mater. 110: 63-76. https://doi.org/10.1016/j.jhazmat.2004.02.037
  16. Kao CM, Chen CY, Chen SC, Chien HY, Chen YL. 2008. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation. Chemosphere 70: 1492-1499. https://doi.org/10.1016/j.chemosphere.2007.08.029
  17. Ramadass K, Megharaj M, Venkateswarlu K, Naidu R. 2018. Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: Impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Sci. Total Environ. 636: 968-974. https://doi.org/10.1016/j.scitotenv.2018.04.379
  18. Wang B, Xie HL, Ren HY, Li X, Chen L, Wu BC. 2019. Application of AHP, TOPSIS, and TFNs to plant selection for phytoremediation of petroleum-contaminated soils in shale gas and oil fields. J. Clean. Prod. 233: 13-22. https://doi.org/10.1016/j.jclepro.2019.05.301
  19. Agamuthu P, Abioye OP, Aziz AA. 2010. Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. J. Hazard. Mater. 179: 891-894. https://doi.org/10.1016/j.jhazmat.2010.03.088
  20. Limmer M, Burken J. 2016. Phytovolatilization of organic contaminants. Environ. Sci. Technol. 50: 6632-6643. https://doi.org/10.1021/acs.est.5b04113
  21. Barrutia O, Garbisu C, Epelde L, Sampedro MC, Goicolea MA, Becerril JM. 2011. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils. Sci. Total Environ. 409: 4087-4093. https://doi.org/10.1016/j.scitotenv.2011.06.025
  22. IPCC, 2013. In: Stocker, TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels, A, Xia Y, Bex V, Midgley PM. (Eds.), Climate change 2013: The physical science basis. Contribution of working Ggoup I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK & New York, NY, USA.
  23. Wright EL, Black CR, Turner B, Sjogersten S, 2013. Environmental controls of temporal and spatial variability in $CO_2$ and $CH_4$ fluxes in a neotropical peatland. Glob. Change Biol. 19: 3775-3789. https://doi.org/10.1111/gcb.12330
  24. Hoyos-Santillan J, Lomax BH, Large D, Turner BL, Boom A, Lopez OR, et al. 2016. Quality not quantity: organic matter composition controls of $CO_2$ and $CH_4$ fluxes in neotropical peat profiles. Soil Biol. Biochem. 103: 86-96. https://doi.org/10.1016/j.soilbio.2016.08.017
  25. Yan F, Schubert S, Mengel K, 1996. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem. 28: 617-624. https://doi.org/10.1016/0038-0717(95)00180-8
  26. Chen Y, Li S, Zhang Y, Li T, Ge H, Xia S, et al. 2019. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biol. Biochem. 129: 191-200. https://doi.org/10.1016/j.soilbio.2018.11.015
  27. Wang W, Neogi S, Lai DYF, Zeng C, Wang C, Zeng D. 2017. Effects of industrial and agricultural waste amendment on soil greenhouse gas production in a paddy field in Southeastern China. Atmos. Environ. 164: 239-249. https://doi.org/10.1016/j.atmosenv.2017.05.052
  28. Martin BC, George SJ, Price CA, Ryan MH, Tibbett M. 2014. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci. Total Environ. 472: 642-653. https://doi.org/10.1016/j.scitotenv.2013.11.050
  29. Kaimi E, Mukaidani T, Miyoshi S, Tamaki M. 2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ. Pollut. 55: 110-119.
  30. Nanekar S, Dhote M, Kashyap S, Singh SK, Juwarkar AA. 2015. Microbe assisted phytoremediation of oil sludge and role of amendments: a mesocosm study. Int. J. Environ. Sci. Technol. 12: 193-202. https://doi.org/10.1007/s13762-013-0400-3
  31. Basumatary B, Bordoloi S, Sarma HP. 2012. Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water Air Soil Pollut. 223: 3373-3383. https://doi.org/10.1007/s11270-012-1116-6
  32. Hussain F, Hussain I, Khan AHA, Muhammad YS, Iqbal M, Soja G, et al. 2018. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ. Exp. Bot. 153: 80-88. https://doi.org/10.1016/j.envexpbot.2018.05.012
  33. Arslan M, Afzal M, Amin I, Iqbal S, Khan QM. 2014. Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil. PLoS One 9: e111208. https://doi.org/10.1371/journal.pone.0111208
  34. Cartmill AD, Cartmill DL, Alarcon A. 2014. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil. Int. J. Phytoremediat. 16: 285-301. https://doi.org/10.1080/15226514.2013.773280
  35. Plociniczak T, Fic E, Pacwa-Plociniczak M, Pawlik M, Piotrowska-Seget Z. 2017. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain. Int. J. Phytoremediat. 19: 614-620. https://doi.org/10.1080/15226514.2016.1278420
  36. Afegbua SL, Batty LC. 2019. Effect of plant growth promoting bacterium; Pseudomonas putida UW4 inoculation on phytoremediation efficacy of monoculture and mixed culture of selected plant species for PAH and lead spiked soils. Int. J. Phytoremediat. 21: 200-208. https://doi.org/10.1080/15226514.2018.1501334
  37. Moubasher HA, Hegazy AK, Mohamed NH, Moustafa YM, Kabiel HF, Hamad AA. 2015. Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. Int. Biodeterior. Biodegr. 98: 113-120. https://doi.org/10.1016/j.ibiod.2014.11.019
  38. Emmanuel O, Enobong E, Gideon, A. 2018. Laboratory-scale bioremediation of crude oil polluted soil using a consortia of rhizobacteria obtained from plants in Gokana-Ogoni, Rivers state. J. Advan. Microbiol. 9: 2456-7116.
  39. Hernandez-Ortega HA, Alarcon A, Ferrera-Cerrato R, Zavaleta-Mancera HA, Lopez-Delgado HA, Mendoza-Lopez MR. 2012. Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. J. Environ. Econom. Manage. 95: S319-S324.
  40. Hou J, Liu W, Wang B, Wang Q, Luo Y, Franks AE. 2015. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138: 592-598. https://doi.org/10.1016/j.chemosphere.2015.07.025
  41. Hall J, Soole K, Bentham R. 2011. Hydrocarbon phytoremediation in the family Fabacea -a review. Int. J. Phytoremediat. 13: 317-332. https://doi.org/10.1080/15226514.2010.495143
  42. Fu D, Teng Y, Luo Y, Tu C, Li S, Li Z, et al. 2012. Effects of alfalfa and organic fertilizer on benzo[a]pyrene dissipation in an aged contaminated soil. Environ. Sci. Pollut. Res. 19: 1605-1611. https://doi.org/10.1007/s11356-011-0672-4
  43. Riskuwa-Shehu ML, Ijah UJJ, Manga SB, Bilbis LS. 2017. Evaluation of the use of legumes for biodegradation of petroleum hydrocarbons in soil. Int. J. Environ. Sci. Technol. 14: 2205-2214. https://doi.org/10.1007/s13762-017-1303-5
  44. Shahzad A, Saddiqui S, Bano A. 2016. The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge. Int. J. Phytoremediat. 18: 521-526. https://doi.org/10.1080/15226514.2015.1115964
  45. Barati M, Bakhtiari F, Mowla D, Safarzadeh S. 2017. Total petroleum hydrocarbon degradation in contaminated soil as affected by plants growth and biochar. Environ. Earth Sci. 76: 688. https://doi.org/10.1007/s12665-017-7017-7
  46. Ingrid L, Lounes-Hadj Sahraoui A, Frederic L, Yolande D, Joel F. 2016. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: microcosm experiment on aged-contaminated soil. Environ. Pollut. 213: 549-560. https://doi.org/10.1016/j.envpol.2016.02.056
  47. Lacalle RG, Gomez-Sagasti MT, Artetxe U, Garbisu C, Becerril JM. 2018. Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. Sci. Total Environ. 618: 347-356. https://doi.org/10.1016/j.scitotenv.2017.10.334
  48. Kai T, Ikeura H, Ozawa S, Tamaki M. 2018. Effects of basal fertilizer and perlite amendment on growth of zinnia and its remediation capacity in oil-contaminated soils. Int. J. Phytoremediation 20: 1236-1242. https://doi.org/10.1080/15226514.2018.1460310
  49. Liu R, Jadeja RN, Zhou Q, Liu Z. 2012. Treatment and remediation of petroleum-Contaminated soils using selective ornamental plants. Environ. Eng. Sci. 29: 494-501. https://doi.org/10.1089/ees.2010.0490
  50. Cook RL, Hesterberg D. 2013. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int. J. Phytoremediat. 15: 844-860. https://doi.org/10.1080/15226514.2012.760518
  51. Brink SC. 2016. Unlocking the secrets of the rhizosphere. Trends Plant Sci. 21: 169-170. https://doi.org/10.1016/j.tplants.2016.01.020
  52. Mhatrea PH, Karthikb C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, et al. 2019. Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatal. Agric. Biotechnol. 17: 119-128. https://doi.org/10.1016/j.bcab.2018.11.009
  53. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. 2015. Plant growth promoting rhizobia: challenges and opportunities. 3Biotech 5: 355-377.
  54. Cakmakci R, Donmez F, Aydm A, Sahin F. 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38: 1482-1487. https://doi.org/10.1016/j.soilbio.2005.09.019
  55. Siddiqui ZA, Mahmood I. 2001. Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour. Technol. 79: 41-45. https://doi.org/10.1016/S0960-8524(01)00036-0
  56. Zaidi A, Khan MS, Ahemad M, Oves M. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol. Immunol. Hung. 56: 263-284. https://doi.org/10.1556/AMicr.56.2009.3.6
  57. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2: 587. https://doi.org/10.1186/2193-1801-2-587
  58. Hall JA, Peirson D, Ghosh S, Glick BR. 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr. J. Plant Sci. 44: 37-42. https://doi.org/10.1080/07929978.1996.10676631
  59. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA. 2006. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils 42: 267-272. https://doi.org/10.1007/s00374-005-0024-y
  60. Sujatha N, Ammani K. 2013. Siderophore production by the isolates of fluorescent pseudomonads. Int. J. Curr. Res. Rev. 5: 1-7.
  61. Guan LL, Kanoh K, Kamino K. 2001. Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron limited conditions. Appl. Environ. Microbiol. 67: 1710-1717. https://doi.org/10.1128/AEM.67.4.1710-1717.2001
  62. Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol. Control 29: 66-72. https://doi.org/10.1016/S1049-9644(03)00124-5
  63. Raj SN, Deepak SA, Basavaraju P, Shetty HS, Reddy MS, Kloepper JW. 2003. Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot. 22: 579-588. https://doi.org/10.1016/S0261-2194(02)00222-3
  64. Gopalakrishnan S, Srinivas V, Samineni S. 2017. Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 11: 116-123. https://doi.org/10.1016/j.bcab.2017.06.012
  65. Insunza V, Alstrom S, Eriksson KB. 2002. Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato. Plant Soil 241: 271-278. https://doi.org/10.1023/A:1016159902759
  66. Tara N, Afzal M, Ansari TM, Tahseen R, Iqbal S, Khan QM. 2014. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. Int. J. Phytoremediation 16: 1268-1277. https://doi.org/10.1080/15226514.2013.828013
  67. Zhang X, Chen L, Liu X, Wang C, Chen X, Xu G, et al. 2014. Synergic degradation of diesel by Scirpus triqueter and its endophytic bacteria. Environ. Sci. Pollut. Res. 21: 8198-8205. https://doi.org/10.1007/s11356-014-2807-x
  68. Wu T, Xu J, Xie W, Yao Z, Yang H, Sun C, et al. 2018. Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Front. Microbiol. 9: 1087. https://doi.org/10.3389/fmicb.2018.01087
  69. Gao Y, Guo S, Wang J, Li D, Wang H, Zeng D. 2014. Effects of different remediation treatments on crude oil contaminated saline soil. Chemosphere 117: 486-493. https://doi.org/10.1016/j.chemosphere.2014.08.070
  70. Ebadi A, Sima NAK, Olamaee M, Hashemi M, Nasrabadi RG. 2018. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria. J. Environ. Manage. 219: 260-268. https://doi.org/10.1016/j.jenvman.2018.04.115
  71. He J, Fana X, Liu H, He X, Wang Q, Liu Y, et al. 2019. The study on Suaeda heteroptera Kitag, Nereis succinea and bacteria's joint bioremediation of oil-contaminated soil. Microchem. J. 147: 872-878. https://doi.org/10.1016/j.microc.2019.03.081
  72. Yu XZ, Wu SC, Wu FY, Wong MH. 2011. Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. J. Hazard. Mater. 186: 1206-1217. https://doi.org/10.1016/j.jhazmat.2010.11.116
  73. Bisht S, Pandey P, Kaur G, Aggarwal H, Sood A, Sharma S, et al 2014. Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. Eur. J. Soil Biol. 60: 67-76. https://doi.org/10.1016/j.ejsobi.2013.10.009
  74. Singha LP, Sinha N, Pandey P. 2018. Rhizoremediation prospects of polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil. Ecotox. Environ. Safe. 164: 579-588. https://doi.org/10.1016/j.ecoenv.2018.08.069
  75. Gao Y, Zong J, Que H, Zhou Z, Xiao M, Chen S. 2017. Inoculation with arbuscular mycorrhizal fungi increases glomalin-related soil protein content and PAH removal in soils planted with Medicago sativa L. Soil Biol. Biochem. 115: 148-151. https://doi.org/10.1016/j.soilbio.2017.08.023
  76. Liu W, Hou J, Wang Q, Ding L, Luo Y. 2014. Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil. Chemosphere 117: 303-308. https://doi.org/10.1016/j.chemosphere.2014.07.026
  77. Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D. 2016. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci. Total Environ. 563-564: 693-703. https://doi.org/10.1016/j.scitotenv.2015.10.061
  78. Godheja J, Shekhar SK, Modi DR. 2017. Bacterial Rhizoremediation of Petroleum Hydrocarbons (PHC). In Plant-microbe interactions in agro-ecological perspectives. pp. 495-519. Springer, Singapore.
  79. Wiszniewska A, Hanus-Fajerska E, Muszynska E, Ciarkowska K. 2016. Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26: 1-12. https://doi.org/10.1016/S1002-0160(15)60017-0
  80. Ameloot N, Graber ER, Verheijen FG, De Neve S. 2013. Interactions between biochar stability and soil organisms: review and research needs. Eur. J. Soil Sci. 64: 379-390. https://doi.org/10.1111/ejss.12064
  81. Bertola M, Mattarozzi M, Sanangelantoni AM, Careri M, Visioli G. 2019. PGPB colonizing three-year biochar-amended soil: Towards biochar-mediated biofertilization. J. Soil Sci. Plant Nut. 19: 841-850. https://doi.org/10.1007/s42729-019-00083-2
  82. Leahy JG, Colwell RR. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Mol. Biol. Rev. 54: 305-315.
  83. Tremblay J, Yergeau E, Fortin N, Cobanli S, Elias M, King TL, et al. 2017. Chemical dispersants enhance the activity of oil-and gas condensate-degrading marine bacteria. ISME J. 11: 2793. https://doi.org/10.1038/ismej.2017.129
  84. Pangala SR, Moore S, Hornibrook ERC, Gauci V. 2013. Trees are major conduits for methane egress from tropical forested wetlands. New Phytologist 197: 524-531. https://doi.org/10.1111/nph.12031
  85. Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM. 2008. Root exudates regulate soil fungal community composition and diversity. Appl. Environ. Microbiol. 74: 738-744. https://doi.org/10.1128/AEM.02188-07
  86. Silva IR, Novais RF, Jham GN, Barros NF, Gebrim FO, Nunes FN, et al. 2004. Responses of eucalypt species to aluminum: the possible involvement of low molecular weight organic acids in the Al tolerance mechanism. Tree Physiol. 24: 1267-1277. https://doi.org/10.1093/treephys/24.11.1267
  87. Strom L, Owen AG, Godbold DL, Jones DL. 2002. Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biol. Biochem. 34: 703-710. https://doi.org/10.1016/S0038-0717(01)00235-8
  88. Coskun D, Britto DT, Shi W, Kronzucker HJ. 2017. How plant root exudates shape the nitrogen cycle. Trends Plant Sci. 22: 661-673. https://doi.org/10.1016/j.tplants.2017.05.004
  89. Kerdchoechuen O. 2005. Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield. Agr. Ecosyst. Environ. 108: 155-163. https://doi.org/10.1016/j.agee.2005.01.004
  90. Girkina NT, Turnerb BL, Ostlec N, Craigona J, Sjogerstena S. 2018b. Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat. Soil Biol. Biochem. 127: 280-285. https://doi.org/10.1016/j.soilbio.2018.09.033
  91. Girkina NT, Turnerb BL, Ostlec N, Craigona J, Sjogerstena S. 2018a. Root exudate analogues accelerate $CO_2$ and $CH_4$ production in tropical peat. Soil Biol. Biochem. 117: 48-55. https://doi.org/10.1016/j.soilbio.2017.11.008
  92. Florio A, Brefort C, Gervaix J, Berard A, Le Roux X. 2019. The responses of $NO_2{^-}$ and $N_2O$-reducing bacteria to maize inoculation by the PGPR Azospirillum lipoferum CRT1 depend on carbon availability and determine soil gross and net $N_2O$ production. Soil Biol. Biochem. 136: 107524. https://doi.org/10.1016/j.soilbio.2019.107524
  93. Kim J, Yoo G, Kim D, Ding W, Kang H. 2017. Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Appl. Soil Ecol. 117-118: 57-62. https://doi.org/10.1016/j.apsoil.2017.05.006
  94. Duan P, Zhang Q, Zhang X, Xiong Z. 2019. Mechanisms of mitigating nitrous oxide emissions from vegetable soil varied with manure, biochar and nitrification inhibitors. Agric. Forest Meteorol. 278: 107672. https://doi.org/10.1016/j.agrformet.2019.107672
  95. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489: 220-230. https://doi.org/10.1038/nature11550

Cited by

  1. 옥수수와 톨페스큐 근권 유래의 메탄 산화 및 아산화질소 환원 세균 컨소시움 특성 vol.49, pp.2, 2020, https://doi.org/10.48022/mbl.2102.02007
  2. Enhanced degradation of petroleum hydrocarbons by immobilizing multiple bacteria on wheat bran biochar and its effect on greenhouse gas emission in saline-alkali soil vol.286, pp.p2, 2020, https://doi.org/10.1016/j.chemosphere.2021.131663