• 제목/요약/키워드: climate environments

검색결과 304건 처리시간 0.029초

소비자들의 일반기후환경태도와 패션기후환경태도: 가치와 지식 및 기후인식과의 관계를 중심으로 (Consumers' Attitudes toward the General and Fashion-Specific Climate Environments: Focusing on the Relations with Values, Knowledge, and Climate Cognition)

  • 정인희
    • Human Ecology Research
    • /
    • 제61권4호
    • /
    • pp.599-613
    • /
    • 2023
  • This study investigated female consumers' attitudes toward the general and fashion-specific climate environments and analyzed the relations between the attitudes and the variables such as values, knowledge, and climate cognition. The data was collected from a sample of 450 women in their 20s, 30s, and 40s via quota sampling from a selfreported online survey in 2023. The measurement comprised the attitudes toward the general and fashion-specific climate environments, Rokeach's 18 terminal values, Holbrook's 8 consumer values regarding fashion products, climate environmental knowledge related to fashion, the cognition concerning the climate crisis, and several demographic variables. Descriptive statistics, factor analysis, reliability analysis, and correlations were applied to the data using SPSS. As a result, two factors were determined for the attitudes toward the general and fashion-specific climate environments, respectively: social and personal. Family security, happiness, and self-respect were identified as important terminal values. Quality, efficiency, aesthetics, and ethics were considered important when the current sample group purchased fashion products. The mean score of climate environmental knowledge related to fashion was lower than neutral; however the cognition of the climate crisis was considerably high. Attitudes toward the general and fashion-specific climate environments showed positive relations with values, knowledge, and climate cognition. The results were discussed to provide some insight and suggestions to carbon neutrality and the related studies.

기후변화가 남해(북부 동중국해 포함) 해양생태계에 미치는 영향 평가 시범 연구 II (Assessment of the Impact of Climate Change on Marine Ecosystem in the South Sea of Korea II)

  • 주세종;김세주
    • Ocean and Polar Research
    • /
    • 제35권2호
    • /
    • pp.123-125
    • /
    • 2013
  • According to the Intergovernmental Panel on Climate Change (IPCC), ocean warming and acidification are accelerating as a result of the continuous increase in atmospheric $CO_2$. This may affect the function and structure of marine ecosystems. Recently, changes in marine environments/ecosystems have been observed (increase in SST, decrease in the pH of seawater, northward expansion of subtropical species, etc.) in Korean waters. However, we still don't understand well how climate change affects these changes and what can be expected in the future. In order to answer these questions with regard to Korean waters, the project named 'Assessment of the impact of climate change on marine ecosystems in the South Sea of Korea' has been supported for 5 years by the Ministry of Oceans and Fisheries and is scheduled to end in 2013. This project should provide valuable information on the current status of marine environments/ecosystems in the South Sea of Korea and help establish the methodology and observation/prediction systems to better understand and predict the impact of climate/marine environment changes on the structure and function of marine ecosystems. This special issue contains 5 research and a review articles that highlight the studies carried out during 2012-2013 through this project.

High-Temperature-Tolerant Fungus and Oomycetes in Korea, Including Saksenaea longicolla sp. nov.

  • Nam, Bora;Lee, Dong-Jae;Choi, Young-Joon
    • Mycobiology
    • /
    • 제49권5호
    • /
    • pp.476-490
    • /
    • 2021
  • Global temperatures are steadily increasing, leading to significant changes in microbial diversity and ecology. In the present study, we isolated high-temperature-growing fungi and fungi-like group (Oomycota) strains from freshwater environments of Korea and identified them based on cultural, morphological, and multilocus phylogenetic analyses. As a result, we introduce Saksenaea (Fungi) isolates as a new species, Saksenaea longicolla sp. nov. and record Phytophthora chlamydospora and P. lagoariana (Oomycota) new to Korea. In the growth experiments, they exhibited high-temperature tolerance, which can grow at 35-40 ℃ but become inactive at 4 ℃ and below. This study confirms the presence of high-temperature-tolerant fungi and oomycetes in Korea and suggests that the Korean climate conditions are changing in favor of these species. This indicates that climate warming is altering microbial distributions in freshwater environments.

기후변화가 반영된 도시 열환경 시뮬레이션 모델의 연구 (A Study on the Urban Heat Simulation Model Incorporating the Climate Changes)

  • 강종화;김완수;윤정임;이주성;김석철
    • 한국대기환경학회지
    • /
    • 제34권5호
    • /
    • pp.697-707
    • /
    • 2018
  • A fast running model comprising the climate change effects is proposed for urban heat environment simulations so as to be used in urban heat island studies and/or the urban planning practices. By combining Hot City Model, a high resolution urban temperature prediction model utilizing the Lagrangian particle tracing technique, and the numerical weather simulation data which are constructed up to year of 2100 under the climate change scenarios, an efficient model is constructed for simulating the future urban heat environments. It is applicable to whole city as well as to a small block area of an urban region, with the computation time being relatively short, requiring the practically manageable amount of the computational resources. The heat environments of the entire metropolitan Seoul area in South Korea are investigated with the aid of the model for the present time and for the future. The results showed that the urban temperature gradually increase up to a significant level in the future. The possible effects of green roofs on the buildings are also studied, and we observe that green roofs don't lower the urban temperature efficiently while making the temperature fields become more homogeneous.

지구기후모형 기온변화에 따른 미래 하천생태환경에서의 수온 예측 (Prediction of Climate-induced Water Temperature using Nonlinear Air-water Temperature Relationship for Aquatic Environments)

  • 이길하
    • 한국환경과학회지
    • /
    • 제25권6호
    • /
    • pp.877-888
    • /
    • 2016
  • To project the effects of climate-induced change on aquatic environments, it is necessary to determine the thermal constraints affecting different fish species and to acquire time series of the current and projected water temperature (WT). Assuming that a nonlinear regression between the WT at individual stations and the ambient air temperature (AT) at nearby weather stations could represent the best relationship of air-water temperature, This study estimates future WT using a general circulation model (GCM). In addition, assuming that the grid-averaged observations of AT correspond to the AT output from GCM simulation, this study constructed a regression curve between the observations of the local WT and the concurrent GCM-simulated surface AT. Because of its low spatial resolution, downscaling is unavoidable. The projected WT under global warming scenario A2 (B2) shows an increase of about $1.6^{\circ}C$ ($0.9^{\circ}C$) for the period 2080-2100. The maximum/minimum WT shows an amount of change similar to that of the mean values. This study will provide guidelines for decision-makers and engineers in climate-induced river environment and ecosystem management.

Constraints and opportunities to sustain future wheat yield and water productivity in semi-arid environment

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.185-185
    • /
    • 2019
  • Sustaining future wheat production is challenged by anthropogenically forced climate warming and drying led by increased concentration of greenhouse gases all around the globe. Warming stresses, originating from the elevated $CO_2$ concentration, are continuously reported to have negative impacts on wheat growth and yield. Yet, elevated $CO_2$ concentration, despite being disparagingly blamed for promoting warming, is also associated with a phenomenon called $CO_2$ enrichment; in which wheat yield can improve due to the enhanced photosynthesis rates and less water loss through transpiration. The conflicting nature of climate warming and $CO_2$ enrichment and their interplay can have specific implications under different environments. It is established form the field and simulation studies that the two contrasting phenomena would act severely in their own respect under arid and semi-arid environments. Wheat is a dietary staple for masses in Pakistan. The country's wheat production system is under constant stress to produce more from irrigated agricultural lands, primarily lying under arid to semi-arid environments, to meet the rapidly growing domestic needs. This work comprehensively examines the warming impacts over wheat yield and water productivity (WP), with and without the inclusion of $CO_2$ enrichment, under semi-arid environment of Punjab which is the largest agricultural province of Pakistan. Future wheat yields and WPs were simulated by FAO developed AquaCrop model v 5.0. The model was run using the bias-correction climate change projections up to 2080 under two representative concentration pathways (RCP) scenarios: 4.5 and 8.5. Wheat yield and WPs decreased without considering the $CO_2$ enrichment effects owing to the elevated irrigation demands and accelerated evapotranspiration rates. The results suggested that $CO_2$ enrichment could help maintain the current yield and WPs levels during the 2030s (2021-2050); however, it might not withhold the negative climate warming impacts during the 2060s (2051-2080). Furthermore, 10 - 20 day backward shift in sowing dates could also help ease the constraints imposed by climate warming over wheat yields and WPs. Although, $CO_2$ enrichment showed promises to counteract the adverse climate warming impacts but the interactions between climate warming and $CO_2$ concentrations were quite uncertain and required further examination.

  • PDF

기후변화 조건에서 수분구배 및 영양소 구배에 따른 굴참나무와 상수리나무 잎 형태적 특성의 생태지위 변화 (Variations in Ecological Niche of Quercus variabilis and Quercus acutissima Leaf Morphological Characters in Response to Moisture and Nutrient Gradient Treatments under Climate Change Conditions)

  • 박여빈;김의주;박재훈;김윤서;박지원;이정민;유영한
    • 한국환경복원기술학회지
    • /
    • 제27권2호
    • /
    • pp.43-53
    • /
    • 2024
  • This study attempted to elucidate the ecological niches and influencing environmental factors of Quercus variabilis and Quercus acutissima, which are representative deciduous broad-leaved trees in Korean forests, taxonomically close and genetically similar, under climate change conditions. Under climate change conditions induced by increased CO2 and temperature, soil moisture and nutrient environments were manipulated in four gradients. At the end of the growing, plants were harvested to measure growth responses, calculate ecological niches, and compare them with those of the control. Eperimental plants were grown for 180 days in a glass greenhouse designed with four gradients each for soil moisture and nutrient environments under climate change conditions induced by increased CO2 and temperature. After harvesting, growth responses of leaf traits were measured, ecological niches were calculated, and these were compared with those of the control groups. Furthermore, the responses of the two species' populations were interpreted using principal component analysis(PCA) based on leaf trait measurements. As a result, under climate change conditions, the ecological niche breadth for moisture environment was broader for Quercus variabilis than Quercus acutissima, whereas for the nutrient environment, Quercus acutissima exhibited a broader niche breadth than Quercus variabilis. And the rate of change in ecological niche breadth due to climate change decreased for Quercus variabilis in both moisture and nutrient environments, while for Quercus acutissima, it increased in the moisture environment but decreased in the nutrient environment. Additionally, in terms of group responses, both Quercus variabilis and Quercus acutissima expanded their ecological niches under climate change conditions in both soil moisture and nutrient conditions, with Quercus acutissima exhibiting a broader niche than Quercus variabilis under nutrient conditions. These results indicate that the changes in leaf morphological characteristics and the responses of individuals reflecting them vary not only under climate change conditions but also depending on environmental factors.

Software Climate Change and its Disruptive Weather: A Potential Shift from "Software Engineering" to Vibrant/Dynamic Softology

  • Ghani, Imran;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권8호
    • /
    • pp.3925-3942
    • /
    • 2016
  • Like natural climate change on the planet earth, the climate in software development environments is also changing (fast). Like the natural weather, the software environment is also disruptive. As the climate experts alert and suggest taking necessary measures to overcome certain challenges to make this earth a safer and comfortable living place, likewise this article also alerts the relevant stakeholders of software craftsmanship about the dynamic challenges that traditional Software Engineering (SE) with purely "Engineering mind-set" is not capable to respond. Hence, some new thoughts to overcome such challenges are shared. Fundamentally, based on the historical evidences, this article presents the authors' observation about continuous shift from traditional "Engineering-based" software development approaches to disruptive approaches - "Vibrant Softology". The authors see the cause of this shift as disruptive transformational force, which is so powerful that it is uncontrollably diminishing the "Engineering-based" approach from software development environments. The authors align it with climate change analogy. Based on this analogy, the authors feel the need to theoretically re-coin the notion of SE to some new term; perhaps Vibrant/Dynamic Softology (VS or DS). Hence, the authors suggest "a new (disruptive and dynamic) way of thinking is required to develop software". It is worth mentioning that the purpose of article and this new theory is not to disparage the notion of software engineering altogether, rather the aim is to highlight the importance of transformation from SE to its next level (perhaps VS/DS) due to the emerging needs in the software craftsmanship environment.

기후변화에 대비한 환경연구의 방향 (Consideration on new research direction in marine environmental sciences in relation to climate change)

  • 김수암
    • 환경정책연구
    • /
    • 제1권1호
    • /
    • pp.1-24
    • /
    • 2002
  • Due to the recent increase in greenhouse gases in atmosphere, world climate is rapidly changing and in turn, the earth ecosystem responds upon the climate changes. Comparing the ecosystem in the past, the present shapes of ecosystem is the result of the serious modification. Fishery resources in marine ecosystem, which usually occupy the upper trophic level, are also inevitable from such changes, because they always react to the natural environmental conditions. The northwestern Pacific is the most productive ocean in the world producing about 30% of world catch. From time to time, however, it has been notified that abundance, distribution and species composition of major fish species were altered by climate events. Furthermore, primary productivity of the ocean is not stable under the changing environments, so that carrying capacity of the ocean varies from one climate regime to another. Major climate events such as global warming, atmospheric circulation pattern, climate regime shift in the North Pacific, and El Nino event in the Pacific tropical waters were introduced in relation to fisheries aspects. The current status and future projection of fishery production was investigated, especially in the North Pacific including Korean waters. This new paradigm, ecosystem response to environmental variability, has become the main theme in marine ecology and fishery science, and the GLOBEC-type researches might provide a solution far cause-effect mechanism as well as prediction capability. Ecosystem management principles for multi-species should be adopted for better understanding and management of ecosystem.

  • PDF

도시기후 평가와 방재를 위한 도시기상 수치모의 (Numerical Simulation for Urban Climate Assessment and Hazard)

  • 오성남
    • 한국방재학회지
    • /
    • 제2권4호
    • /
    • pp.40-47
    • /
    • 2002
  • Since it is important to understand the bio-climatic change in Seoul for ecological city planning in the future, this paper gives an overview on bio-climate analysis of urban environments at Seoul. We analyzed its characteristics in recent years using the observations of 24 of Automatic Weather Station (AWS) by Korea Meteorological Administration (KMA). In urbanization, Seoul metropolitan area is densely populated and is concentrated with high buildings. This urban activity changes land covering, which modifies the local circulation of radiation, heat and moisture, precipitation and creating a specific climate. Urban climate is evidently manifested in the phenomena of the increase of the air temperature, called urban heat Island and in addition urban sqall line of heavy rain. Since a city has its different land cover and street structure, these form their own climate character such as climate comfort zone. The thermal fold in urban area such as the heat island is produced by the change of land use and the air pollution that provide the bio-climate change of urban eco-system. The urban wind flow is the most important climate element on dispersion of air pollution, thermal effects and heavy shower. Numerical modeling indicates that the bio-climatic transition of wind wake in urban area and the dispersion of the air pollution by the simulations of the wind variation depend on the urban land cover change. The winds are separately simulated on small and micro-scale at Seoul with two kinds of kinetic model, Witrak and MUKLIMO.

  • PDF