• Title/Summary/Keyword: climate change sensitivity

Search Result 155, Processing Time 0.021 seconds

Clothing Wearing and Influencing Factors According to Weather and Temperature (날씨 및 기온에 따른 의복착용과 영향요인)

  • Ji, Hye-Kyung;Kim, Hyun-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.11
    • /
    • pp.1900-1911
    • /
    • 2010
  • This study focuses on clothing as one of the most seasonal products and investigates consumer behavior related to climate change adaptation. This study addressed four objectives: (1) to identify the clothing behavior of consumers for the adaptation to climate change; (2) to identify the effects of fashion involvement and climate sensitivity on clothing attitude for the adaptation to climate change; (3) to identify the effect of clothing purchase time on climate sensitivity and clothing attitude for the adaptation to climate change; and (4) to identify the effect of consumer demographics on climate sensitivity and clothing attitude for the adaptation to climate change. A survey questionnaire was developed and implemented to collect data for measuring clothing involvement, fashion involvement, and climate sensitivity. In addition, clothing involvement, clothing assortment needs, and clothing worn for the adaptation to climate change were measured. A total of 349 responses were analyzed by t-test, ANOVA and path analysis with SPSS18.0. The results of the analysis are as follows. Changes in temperature were considered more important than changes in weather for the functional needs of clothing, purchase needs, and assortment items needs. The assortment items wearing for the adaptation to climate change varied depending on the temperature and weather. Fashion involvement directly influenced clothing assortment needs and indirectly influenced the clothing worn for the adaptation to climate change. In terms of clothing purchase time, those purchasing clothing before the season begins, tended to have a high fashion involvement and clothing attitude for the adaptation to climate change. Those in their twenties and single, tended to be more sensitive to climate change. This study also discusses the implications for merchandising strategies.

Climate Change Vulnerability Assessment of Cool-Season Grasslands Based on the Analytic Hierarchy Process Method

  • Lee, Bae Hun;Cheon, Dong Won;Park, Hyung Soo;Choi, Ki Choon;Shin, Jeong Seop;Oh, Mi Rae;Jung, Jeong Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.189-197
    • /
    • 2021
  • Climate change effects are particularly apparent in many cool-season grasslands in South Korea. Moreover, the probability of climate extremes has intensified and is expected to increase further. In this study, we performed climate change vulnerability assessments in cool-season grasslands based on the analytic hierarchy process method to contribute toward effective decision-making to help reduce grassland damage caused by climate change and extreme weather conditions. In the analytic hierarchy process analysis, vulnerability was found to be influenced in the order of climate exposure (0.575), adaptive capacity (0.283), and sensitivity (0.141). The climate exposure rating value was low in Jeju-do Province and high in Daegu (0.36-0.39) and Incheon (0.33-0.5). The adaptive capacity index showed that grassland compatibility (0.616) is more important than other indicators. The adaptation index of Jeollanam-do Province was higher than that of other regions and relatively low in Gangwon-do Province. In terms of sensitivity, grassland area and unused grassland area were found to affect sensitivity the most with index values of 0.487 and 0.513, respectively. The grassland area rating value was low in Jeju-do and Gangwon-do Province, which had large grassland areas. In terms of vulnerability, that of Jeju-do Province was lower and of Gyeongsangbuk-do Province higher than of other regions. These results suggest that integrating the three aspects of vulnerability (climate exposure, sensitivity, and adaptive capacity) may offer comprehensive and spatially explicit adaptation plans to reduce the impacts of climate change on the cool-season grasslands of South Korea.

Environmental features of the distribution areas and climate sensitivity assesment of Korean Fir and Khinghan Fir (구상나무와 분비나무분포지의 환경 특성 및 기후변화 민감성 평가)

  • Park, Hyun-Chul;Lee, Jung-Hwan;Lee, Gwan-Gyu;Um, Gi-Jeung
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.3
    • /
    • pp.260-277
    • /
    • 2015
  • The object of this study was the climate change sensitivity assessment of Korean Fir and Khinghan Fir as a representative subalpine plant in South Korea. Using species distribution models, we predicted the probability of current and future species distribution. According to this study, potential distribution that have been predicted based on the threshold (MTSS) is, Khinghan Fir was higher loss rate than Korean Fir. And in the climate change sensitivity assessment using the scalar sensitivity weight ($W_{is}$), $W_{is}$ of Korean Fir was higher relatively than the sensitivity of Khinghan Fir. When using the species distribution models as shown in this study may vary depending on the probability of presence data and spatial variables. Therefore should be prior decision studies on the ecological environment of the study species. Based on this study, if it is domestic applicable climate change sensitivity assessment method is developed. it would be important decision-making to climate change and biological diversity of adaptation policy.

SENSITIVITY OF THE KEUM RIVER BASIN TO CLIMATE CHANGE

  • Kim, Young-Oh;Seo, Yong-Won;Lee, Seung-Hyun;Lee, Dong-Ryul
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.267-277
    • /
    • 2000
  • This study reports an examination of the sensitivity of water resources in the Keum River basin to climate change. Assuming a doubling in $CO_2$ concentrations, a cooperative study provided four climate change scenarios for this study, which have been translated into temperature and precipitation scenarios on a basin scale. The study utilized these temperature and precipitation data for each climate change scenario as inputs to the NWS-PC model to generate the corresponding streamflow scenario over the Keum River basin. A reservoir simulation model for the Dae-Chung Dam in the Keum River basin has been developed with an object-oriented simulation environment, STELLA. For each streamflow scenario, the performance of the reservoir was assessed in terms of reliability, resiliency, and vulnerability. Although the simulation results are heavily dependent on the choice of the climate change scenarios, the following conclusions can be clearly concluded: (1) the future streamflow over the Dae-Chung Dam tends to decease during the dry period, which seriously increases competitive water use issues and (2) flood control issues predominate under the $2CO_2$-High case.

  • PDF

SIMULATION OF SOIL MOISTURE VARIABILITY DUE TO CLIMATE ORANGE IN NORTHEAST POND RIVER WATERSHED, NEWFOUNDLAND, CANADA

  • A. Ghosh Bobba;Vijay P. Singh
    • Water Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.31-43
    • /
    • 2003
  • The impacts of climate change on soil moisture in sub - Arctic watershed simulated by using the hydrologic model. A range of arbitrary changes in temperature and precipitation are applied to the runoff model to study the sensitivity of soil moisture due to potential changes in precipitation and temperature. The sensitivity analysis indicates that changes in precipitation are always amplified in soil moisture with the amplification factor for flow. The change in precipitation has effect on the soil moisture in the catchment. The percentage change in soil moisture levels can be greater than the percentage change in precipitation. Compared to precipitation, temperature increases or decreases alone have impacts on the soil moisture. These results show the potential for climate change to bring about soil moisture that may require a significant planning response. They are also indicative of the fact that hydrological impacts affecting water supply may be important in consider-ing the cost and benefits of potential climate change.

  • PDF

A Study on Vulnerability Assessment to Climate Change in Regional Fisheries of Korea (국내 수산 부문의 지역별 기후변화 취약성 평가 연구)

  • Lee, Beo-Dul;Kim, Bong-Tae;Cho, Yong-Sung
    • The Journal of Fisheries Business Administration
    • /
    • v.42 no.1
    • /
    • pp.57-70
    • /
    • 2011
  • Fisheries are subject to unexpected weather condition. While some change of it may be positive for some fisheries, the current state suggests that the effects will be undesirable for many fisheries. The aim of this study is to assess the vulnerability to climate change in 11 regional fisheries of Korea using the framework of IPCC. The vulnerability assessment depends upon the interrelation of three key elements; exposure, sensitivity and adaptive capacity, which were derived from Analytical Hierarchy Process method in this study. These elements would contribute to comprehend relative importance at the regional characteristics of fisheries. We compared the vulnerability index of 11 regional fisheries so as to look for strategies and adaptation methods to the impacts of potential climate change. Jeoun-Nam, Kyeong-Nam, and Jeju are identified as the most vulnerable provinces to climate change on their fisheries because they have high level of sensitivity to predicted climate change and relatively low adaptive capacity. The relatively low vulnerability of Ulsan, Gyeonggi reflects high financial independence, well-equipped infrastructure, social capital in these regions. Understanding of vulnerability to climate change suggests future research directions. This paper will provide a guide to local policy makers and fisheries managers about vulnerability and adaptation planning to climate change.

Evaluation on Climate Change Vulnerability of Korea National Parks (국립공원의 기후변화 취약성 평가)

  • Kim, Chong-Chun;Kim, Tae-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • The purpose of this study is to set the direction to manage national parks to cope with climate change, and offer basic data to establish the relevant policies. Towards this end, this study analyzed the current and future climate change vulnerability of national parks using the 24 proxy variables of vulnerability in the LCCGIS program, a tool to evaluate climate change vulnerability developed by the National Institute of Environmental Research. To analyze and evaluate the current status of and future prospect on climate change vulnerability of national parks, the proxy variable value of climate exposure was calculated by making a GIS spatial thematic map with $1km{\times}1km$ grid unit through the application of climate change scenario (RCP8.5). The values of proxy variables of sensitivity and adaptation capability were calculated using the basic statistics of national parks. The values of three vulnerability evaluation items were calculated regarding the present (2010s) and future (2050s). The current values were applied to the future equally under the assumption that the current state of the proxy variables related to sensitivity and adaptation capability without a future prediction scenario continues. Seoraksan, Odaesan, Jirisan and Chiaksan National Parks are relatively bigger in terms of the current (2010s) climate exposure. The national park, where the variation of heat wave is the biggest is Wolchulsan National Park. The biggest variation of drought occurs to Gyeryongsan National Park, and Woraksan National Park has the biggest variation of heavy rain. Concerning the climate change sensitivity of national parks, Jirisan National Park is the most sensitive, and adaptation capability is evaluated to be the highest. Gayasan National Park's sensitivity is the lowest, and Chiaksan National Park is the lowest in adaptation capability. As for climate change vulnerability, Seoraksan, Odaesan, Chiaksan and Deogyusan National Parks and Hallyeohaesang National Park are evaluated as high at the current period. The national parks, where future vulnerability change is projected to be the biggest, are Jirisan, Woraksan, Chiaksan and Sobaeksan National Parks in the order. Because such items evaluating the climate change vulnerability of national parks as climate exposure, sensitivity and adaptation capability show relative differences according to national parks' local climate environment, it will be necessary to devise the adaptation measures reflecting the local climate environmental characteristics of national parks, rather than establishing uniform adaptation measures targeting all national parks. The results of this study that evaluated climate change vulnerability using climate exposure, sensitivity and adaptation capability targeting Korea's national parks are expected to be used as basic data for the establishment of measures to adapt to climate change in consideration of national parks' local climate environmental characteristics. However, this study analyzed using only the proxy variables presented by LCCGIS program under the situation that few studies on the evaluation of climate change vulnerability of national parks are found, and therefore this study may not reflect overall national parks' environment properly. A further study on setting weights together with an objective review on more proper proxy variables needs to be carried out in order to evaluate the climate change vulnerability of national parks.

Assessing the Potential Impact of Climate Change on Irrigation by Reservoir (농업용 저수지의 농업가뭄에 대한 기후변화 잠재영향 평가)

  • Kim, Soo-Jin;Hwang, Syewoon;Bae, Seung-Jong;Yoo, Seunghwan;Choi, Jin-Yong;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.141-150
    • /
    • 2021
  • In order to assess the impact of climate change on irrigation reservoirs, climate exposure (EI), sensitivity (SI), and potential impact (PI) were evaluated for 1,651 reservoirs nationwide. Climate exposure and sensitivity by each reservoir were calculated using data collected from 2011 to 2020 for seven proxy variables (e.g. annual rainfall) and six proxy variables (e.g. irrigation days), respectively. The potential impact was calculated as the weighted sum of climate exposure and sensitivity, and was classified into four levels: 'Low (PI<0.4)', 'Medium (PI<0.6)', 'High (PI<0.8)', and 'Critical (PI≥0.8)'. The result showed that both the climate exposure index and the sensitivity index were on average high in Daegu and Gyeongbuk with high temperature and low rainfall. About 79.8% of irrigation reservoirs in Daegu, Gyeongbuk, and Ulsan with high climate exposure and sensitivity resulted in a 'High' level of potential impact. On the contrary, 64.5% of the study reservoirs in Gyeongnam and Gangwon showed 'Low' in potential impact. In further studies, it is required to reorganize the proxy variables and the weights in accordance with practical alternatives for improving adaptive capacity to drought, and it is expected to contribute to establishing a framework for vulnerability assessment of an irrigation reservoir.

Preliminary Analysis of Climate Change Damage in Korea Using the PAGE Model (PAGE 모델을 이용한 한국 기후변화의 피해비용 분석)

  • Chae, Yeo-Ra
    • Journal of Environmental Policy
    • /
    • v.9 no.1
    • /
    • pp.31-55
    • /
    • 2010
  • This study aims to estimate potential climate change damage in Korea using the PAGE model. This study reviewed previous a reasearch to compare relative sensitivity to climate change in Korea and other regions to generate climate change damage function. It was found that sensitivity to climate change in Korea is similar to other Organization for Economic Cooperation and Development (OECD) countries. This study estimated climate change impact for three scenarios. If no action is taken, climate change damage cost in Korea could reach US$ 12,928 ~ 57,900 M. Cumulative Net Present Value (NPV)of climate change impact from 1990 to 2100 would be between US$ 143,226 ~ 921,701 Mdepending on emission scenarios. However, this result should be interpreted with caution as it draws its damage function based on only a few available references. Results also showed that an adaptation policy could decrease the degree of climate change impact significantly. If an adaptation policy is implemented, climate change impact will be decreased by US$ 11,355 million dollars in Korea in 2100.

  • PDF

Analysis of Sensitivity and Vulnerability of Endangered Wild Animals to Global Warming (지구 온난화에 따른 국내 멸종위기 야생동물의 민감도 및 취약성 분석)

  • Kim, Jin-Yong;Hong, Seongbum;Shin, Man-Seok
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.235-243
    • /
    • 2018
  • Loss of favorable habitats for species due to temperature increase is one of the main concerns of climate change on the ecosystem, and endangered species might be much more sensitive to such unfavorable changes. This study aimed to analyze the impact of future climate change on endangered wild animals in South Korea by investigating thermal sensitivity and vulnerability to temperature increase. We determined thermal sensitivity by testing normality in species distribution according to temperature. Then, we defined the vulnerability when the future temperature range of South Korea completely deviate from the current temperature range of species distribution. We identified 13 species with higher thermal sensitivity. Based on IPCC future scenarios RCP 4.5 and RCP 8.5, the number of species vulnerable to future warming doubled from 3 under RCP4.5 to 7 under the RCP8.5 scenario. The species anticipated to be at risk under RCP 8.5 are flying squirrel (Pteromys volans aluco), ural owl (Pteromys volans aluco), black woodpecker (Dryocopus martius), tawny owl (Strix aluco), watercock (Gallicrex cinerea), schrenck?s bittern (Ixobrychus eurhythmus), and fairy pitta (Pitta nympha). The other 10 species showing very narrow temperature ranges even without normal distributions and out of the future temperature range may also need to be treated as vulnerable species, considering the inevitable observation scarcity of such endangered species.