• Title/Summary/Keyword: clearance length

Search Result 152, Processing Time 0.022 seconds

Tip Clearance Effect of Low Mass Flow Rate High Specific Speed Centrifugal Impeller (저유량 고비속도 원심압축기 임펠러에서의 팁간극에 따른 효과)

  • Im, Kang-Soo;Kim, Yang-Gu;Kim, Kyi-Soon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.240-243
    • /
    • 2008
  • In this paper, the design of Centrifugal Compressor which is used in sizes 50 horse power has 8 pressure ratio and numerical analysis of the flow within compressor varying tip clearance length are performed. To get high pressure ratio with low power the exit height of impellers is low but compressor has very high speed of revolution. So compressor has high specific speed although mass flow rate is very small. The shape of impellers at the first stage is carried out. Flow and performance characteristics of impellers has been analyzed by using a commercial CFD program, $Fine^{TM}$/turbo. The result shows that loss coefficient is affected by tip clearance length and compressor has proper tip clearance length. It is possible to decrease loss by selecting apt tip clearance length.

  • PDF

Influence of Clearance in Half-piecing of Sheet Metal (금속판재의 하프피어싱 공정에서의 틈새 영향 연구)

  • Yeon, S.M.;Lee, S.K.;Chung, W.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.437-441
    • /
    • 2013
  • Recently, the engraving of letters or a pattern on a product surface has received more attention especially in trying to satisfy the customer requirements. Half-piecing is a protrusion forming process that pierces only 40~50% of the material thickness. In the current study, the half-piercing technique for making clear letters by protruding sheet material was selected and studied. The influence of clearance and penetration depth was investigated by measuring the camber and extruded length of a protrusion after experiments. In addition, a numerical analysis was performed for the same working conditions and compared with experimental results. It is shown that, as the clearance increases, the camber of a protrusion increases rapidly and the extruded length decreases slightly. The deformation pattern around the cutting edge during half-piercing changes from an extrusion mode to a shearing mode as the clearance changes from minus to plus values. It is also confirmed that the experimental results show a good agreement with the numerical analyses.

Numerical Upwelling Experiment for Optimum Arrangement of Artificial Seamount (용승을 고려한 인공해중산 최적배치 수치실험)

  • Kim, Seong-Hyeon;Kim, Dong-Sun
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.997-1009
    • /
    • 2011
  • In order to estimate volume transport by upwelling for single artificial seamount, same shape and size of artificial seamount already deployed was applied to numerical experiment. The result showed that strong upwelling appeared at front while took place downwelling at rear. The strongest upwelling existed at the top of the artificial seamount. Volume transport by upwelling was computed as 785 m3/s. Column arrangement was applied to two artificial seamount in three cases; case 1) no clearance, case 2) sixty-five meters of clearance as half of artificial seamount's length, and case 3) hundred-thirty meters of clearance as an artificial seamount's length. All cases of column arrangements showed more upwelling volume transport than that of single seamount. Particularly, the case of no clearance calculated as 106% and appeared the most upwelling effect comparing to two other cases. Row arrangement was also applied to two artificial seamount in three cases; case 4) no clearance, case 5) forty meters of clearance as an artificial seamount's width, and case 6) eighty meters of clearance as twice of artificial seamount's width. Upwelling volume transport in case 4 increased 48% than the case of single seamount. Other two cases of 5 and 6 were estimated as 97% increased and more effective than case 4. According to the case experiments, column arrangements show more upwelling volume transport than that of row arrangements. In cases of column arrangements, with decreasing clearance between two seamount, the effect increases while showing maximum value at clearance zero. In cases of row arrangements, on the contrary, with decreasing clearance between two seamount, the effect decreases while showing minimum value at clearance zero. Since simple barotropic condition was considered for this study, further study is necessary by considering baroclinic condition to get close to reality. In conclusion, in deploying artificial seamount, optimal arrangement should be well designed to enhance primary and secondary productivity and to increase the diversity of species as well as reducing time and space.

Velocity and Acceleration Error Analysis of Planar Mechanism Due to Tolerances (기계시스템의 공차에 의한 속도 및 가속도 오차의 해석)

  • 이세정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.351-358
    • /
    • 1994
  • A probabilistic model and analysis methods to determine the means and variances of the velocity and acceleration in stochastically-defined planar pin jointed kinematic chains are presented. The presented model considers the effect of tolerances on link length and radial clearance and uncertainty of pin location as a net effect on the link's effective length. The determination of the mean values and variances of the output variables requires the calculation of sensitivities of secondary variables with respect to the random variables. It is shown that this computation is straightforward and can be accomplished by a conventional kinematic analysis package with minor modification. Thus, the concepts of tolerance and clearance have been captured by the model and analysis. The only input data are the nominal linkage model and statistical information. The "effective link length" model is shown to be applicable to both analytical solution and Monte Carlo simulation. The results from both methods are compared. This paper Ksolves the higher-order kinematic problems for the probabilistic design analysis of stochastically-defined mechanisms.echanisms.

Experimental Research of Window Air Tightness and Opening Force with Respect to Mohair Number, Clearance and Shortened Length (모헤어 개수, 틈새 길이 및 축소된 길이의 창문 기밀성 및 개폐력에 대한 실험적 연구)

  • Kim, Seung Jae;Park, Jong Jun;Kim, Young Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.195-203
    • /
    • 2018
  • Mohair is widely used as an airtight material for filling the gap between a window frame and sash. The purpose of this study is to investigate infiltration rate and opening force of sliding windows according to the mohair installation conditions. Infiltration experimental apparatus was set up, and the experimental results were applied to windows to find a correlation between infiltration rates and opening forces. When 4 rows of mohair were installed, the infiltration rate increase became 27.1% per clearance length increase of 1 mm, and the infiltration rate decrease became 5.7% per shortened length increase of 0.1 mm. For 4 rows of mohair, the opening force decreased by 28.2% as the clearance increased by 1 mm, and it increased by 9.3% as the shortened length increased by 0.1 mm.

A Numerical Analysis of the Partial Admission Supersonic Turbine Losses for Geometic Conditions (형상 변수에 따른 부분 흡입형 초음속 터빈 손실에 관한 수치적 연구)

  • Shin Bong-Gun;Im Kang-Soo;Kim Kui-Soon;Jeong Eun-Hwan;Park Pyun-Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.297-305
    • /
    • 2006
  • In this paper, numerical analyses of the flow within turbine for geometric conditions such as nozzle shape, length of axial clearance, and chamfer angle of leading edge of blade have been performed to investigate the partial admission supersonic turbine losses. Firstly, flow's bending occurred at axial clearance is depended on nozzle shape. Next, the chamfer angle of leading edge affects the strength of shock generated at the leading edge. Finally the expansion and mixsing of the flow within axial clearance are largely depended upon the length of axial clearance. Therefore it is found that aerodynamic losses of turbine is affected by nozzle shape and chamfer angel and that partial admission losses is depended on nozzle shape and the length of axial clearance.

  • PDF

Effect on Seal Tooth Clearance on Power Loss and Temperature of Tilting Pad Journal Bearing (씰 투스 간극이 틸팅 패드 저어널 베어링 손실과 온도에 미치는 영향)

  • Bang, Kyungbo;Choi, Yonghoon;Cho, Yongju
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.183-190
    • /
    • 2018
  • Tilting pad journal bearing is widely used for steam turbines because of its excellent dynamic stability. As the turbine capacity increases, power loss in the bearings becomes a matter of concern. Power loss in tilting pad journal bearings can be reduced by increasing the bearing clearance and reducing the pad arc length. In this study, the tilting pad journal bearing is tested by changing the seal tooth clearance to verify the static characteristics of the bearing. Bearing power loss and bearing metal temperature are evaluated to compare the bearing's performance and reliability for several test cases. The test bearing is a tilting pad journal bearing with 300.62mm inner diameter and 120.00mm active length. The bearing power loss, its metal temperature, and oil film thickness are measured and evaluated based on the rotor's rotational speed, oil flow rate, and bearing load. Test results show that a tilting pad journal bearing with large seal tooth clearance has 40% lower power loss compared with a bearing with a small seal tooth clearance. As the seal tooth clearance is increased, the power loss of the tilting pad journal bearing decreases. However, with respect to the bearing metal temperatures, a detuning point is observed that makes the minimum bearing metal temperature. Moreover, as the seal tooth clearance is increased, the oil film thickness increases due to high viscosity.

Effect of Body Size on Feeding Physiology of an Intertidal Bivalve, Glauconome chinensis Gray (Glauconomidae)

  • Lee Chang-Hoon;Song Jae Yoon;Chung Ee-Yung
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.183-190
    • /
    • 2002
  • To determine the effect of body size on the clearance rate and ingestion rate of small intertidal bivalves, Glauconome chinensis, feeding experiments were conducted on individuals of 12 different size classes, from 4 to 16 mm in shell length. Relationships between morphological parameters were also determined. The clearance and ingestion rates of G. chinensis responded similarly to their body size, ranging from 1.3 to 28.2 mL/hr/ind. and from 24.0 to 458.5, ${\mu}gC/hr/ind$., respectively. Both rates increased significantly (p<0.001) as shell length increased from 4 to 9 mm, although neither rate changed significantly when shell length was in the range from 12 to 16 mm. The weight-specific clearance rate $(CR_w)$ and ingestion rate $(IR_w)$ decreased with increasing body size, with values from 1.0 to 3.1 L/hr/g and from 17.9 to 51.3 mgC/hr/g, respectively. The $CR_w$ of G. chinensis was intermediate compared to those of larger bivalve species. The clearance rate (CR) relative to flesh dry weight (FDW) of G. chinensis were fitted well to the power function: $CR=0.43\times(FDW)^{0.71}\;(r^2=0.89)$. The exponent of fitting equation (0.71) of G. chinensis was higher than those of Mytilus edulis (Walne, 1972), Crassostrea gigas (Walne, 1972), and Placopecten magellanicus (MacDonald and Thompson, 1986).

A Numerical Simulation of Heat and Fluid Flow for Predicting the Effect of Passage Arrangement in Automotive Heat Battery (자동차용 열전지에서 유로배열 효과 예측을 위한 열유동 수치묘사)

  • Lee, K.S.;Kwon, J.W.;Baek, C.I.;Song, Y.K.;Han, C.S.;Kim, D.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.64-73
    • /
    • 1995
  • A numerical simulation of heat and fluid flow for predicting the effect of passage arrangement in automotive heat battery has been performed. The system is assumed to be a two-dimensional laminar flow and isothermal boundary is applied to the surface of the latent heat storage vessel. In the case of ideal heat battery the flow rate into each flow passage is evenly distributed. The various models are considered in the view of pressure drop and bulk temperature. The effects on the efficiency of the heat battery are examined by varying geometrical factors such as flow passage clearance, length of a inlet and outlet tank and the length of a latent heat storage vessel. The flow clearance is a very important -factor on the efficiency of a heat battery. As the flow passage clearance becomes narrow, the flow distribution becomes uniform and the bulk temperature increases, however the pressure drop is large. Therefore, optimal flow passage clearance has to be chosen. The present work can be used in optimizing heat battery efficiency.

  • PDF

Clearance rate and feeding according to water temperature and salinity condition in the surf clam, Mactra veneriformis (수온과 염분 조건에 따른 동죽의 여수율과 먹이섭취)

  • Kang, Joung Wook;Lee, Seon Sik;Han, Kyung Nam
    • The Korean Journal of Malacology
    • /
    • v.30 no.2
    • /
    • pp.101-106
    • /
    • 2014
  • Clearance rate and feeding of surf clam, Mactra veneriformis were determined for 5 different water temperature regime (5, 10, 15, 20, $25^{\circ}C$) and salinity regime (8, 14, 20, 26, 32 ‰) with small group ($86.62{\pm}7.10mm$ in shell length) and large group ($147.99{\pm}10.83mm$ in shell length). Clearance rate and feeding increased with water temperature up to $20^{\circ}C$, but rapidly decreased at $25^{\circ}C$. The minimal clearance rate and feedign was recorded at $5^{\circ}C$. surf clam showed low clearance rate and feeding at low salinity (below 20 ‰) and maximum values at high salinity (26-32 ‰).