• Title/Summary/Keyword: clean transfer

Search Result 157, Processing Time 0.027 seconds

Ultra-Clean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films

  • Kim, Sang Jin;Lee, Bora;Choi, Yong Seok;Kim, Philip;Hone, James;Hong, Byung Hee;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.301.1-301.1
    • /
    • 2016
  • We report an ultraclean, cost-effective, and easily scalable method of transferring and patterning large-area graphene using pressure sensitive adhesive films (PSAFs) at room temperature. This simple transfer is enabled by the difference in wettability and adhesion energy of graphene with respect to PSAF and a target substrate. The PSAF transferred graphene is found to be free from residues, and shows excellent charge carrier mobility as high as ${\sim}17,700cm^2/V{\cdot}s$ with less doping compared to the graphene transferred by thermal release tape (TRT) or poly(methyl methacrylate) (PMMA) as well as good uniformity over large areas. In addition, the sheet resistance of graphene transferred by recycled PSAF does not change considerably up to 4 times, which would be advantageous for more cost-effective and environmentally friendly production of large-area graphene films for practical applications.

  • PDF

Potential Performance Enhancement of Dual Heat Pump Systems through Series Operation (히트펌프 직렬운전에 의한 성능 향상 가능성에 관한 연구)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Kim, Hyeon-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.797-802
    • /
    • 2012
  • In this study, the potential performance enhancement in a dual heat pump system through series operation was investigated by a comparison between the performance for parallel and series operation for a heating supply temperature of $60^{\circ}C$. To compare the performance of each configuration fairly, the heat transfer surface area of the heat exchangers was fixed. The inlet temperatures and the flow rates of the heat source and the load were also fixed. In addition, the heat transfer and pressure drop characteristics of the working fluids were considered to achieve a more realistic comparison. The results show that the heating coefficient of performance (COP) of the series configuration is approximately 5% higher than that of the parallel configuration under the simulation conditions considered in the present study.

A Study on the Exhaust Emission of LPG and Gasoline Vehicle (LPG와 가솔린 연료의 차량 배출가스 특성에 대한 비교 연구)

  • 정성환;한상명
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.23-28
    • /
    • 2002
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive industries have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative aftertreatment systems, and using clean fuels. Methanol, ethanol, LNG, LPG, H2, reformulated gasoline are generally recognized as the clean fuel. Since the low price policy of government on LPG has expanded its vehicle market recently, there is concern of the exhaust emission of LPG vehicle. In this paper, we studied the value of LPG fuel as a clean fuel by comparing the results of the exhaust emission from LPG and Gasoline fueled vehicles, and discussed its limitation of LPG vehicle with mixer type as a fuel supply system. FTIR was used to understand the difference of exhaust emission components of LPG and Gasoline fueled vehicles.

Impacts of Fouling and Cleaning on the Performance of Plate Fin and Spine Fin Heat Exchangers

  • Pak, Bock-Choon;Baek, Byung-Joon;Eckhard A. Groll
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1801-1811
    • /
    • 2003
  • An experimental study was conducted to investigate the effects of air-side fouling and cleaning on the performances of various condenser coils used in unitary air-conditioning systems. A total of six condenser coils with different fin geometry and row number were tested. Performance tests were performed at three different conditions: clean-as-received, after fouling, and after cleaning. In all cases, it was observed that the fouling was mostly confined to the frontal face of the heat exchanger as reported in the previous investigations. The amount of deposited dust was more dependent on fin geometry for the single-row heat exchangers than for the double-row heat exchangers. The predominant effect of fouling was to cause a more significant increase in air-side pressure drop than a degradation in heat transfer performance. For the single-row heat exchangers, the pressure drop increased by 28 to 31%, while the heat transfer performance decreased by 7 to 12% at the standard air face velocity of 1.53 m/s depending on fin shape. For the double-row heat exchangers, the pressure drop increased by 22 to 37%, and heat transfer performance decreased by only 4-5% at the same air face velocity. Once the contaminated coils were cleaned according to the given cleaning procedure the original performance of the heat exchangers could almost be recovered completely. The pressure drop could be restored within 1 to 7% and the heat transfer performance could be recovered to within 1 to 5% of the originally clean heat exchangers. Therefore, it is concluded that a periodic application of the specified cleaning technique will be effective in maintaining the thermal performance of the condenser coils.

A Study on VPT phosphor screen formed by screen printing and thermal transfer method (스크린 인쇄법 및 열전사법에 의한 VPT 형광막의 형성연구)

  • Cho M.J.;Nam S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.593-594
    • /
    • 2006
  • A novel thermal transfer method was developed to form the phosphor screen for VPT(Video Phone Tube). This method have advantages of simple process, clean environment, saving raw material and running-cost comparison of electrodeposition, spin coating of conventional methods. But now applying phosphor screen for thermal transfer method has been formed three layers (phosphor layer, ITO layer and thermal adhesive layer) on the PET film as substrate. This is complex process, run to waste of raw-material and require of high cost. Also ITO paste at present has been imported from Japan. To improve these problems, we have manufactured phosphor screen formed by two layers (phosphor layer and ITO layer). We have developed ITO paste that had both conductive and excellent thermal transfer abilities, made it of domestic raw-material.

  • PDF

Analysis of Chattering Problem of a Glass Transfer Robot Hand (글래스 반송용 로봇핸드의 채터링 원인 해석)

  • Kim Joo-Yong;Kang Chul-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.98-104
    • /
    • 2005
  • A glass transfer robot is used for handling LCDs in the production line of flat panel displays under clean environments. During glass transfer operations of the robot, chattering phenomenon occurs at the robot hand. This deteriorates the accuracy and repeatability of the end-effector of the robot. In this paper, we present the kinematic solution of the robot and then analyze the cause of this chattering phenomenon in view of the mechanism and servo control and propose a practical solution that can reduce the chattering significantly at the robot hand of the glass transfer robot.

Effect of Mixed Jet with Primary Nozzle Area Ratio of Ejector on Oxygen Transfer Characteristics (산소 전달 특성에 미치는 이젝터 구동 노즐 면적비에 따른 혼합 분류의 영향)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.126-133
    • /
    • 2022
  • The objective of this is to experimentally investigate the effect of mixed jet on the oxygen transfer characteristics with the primary nozzle area ratio of an annular nozzle ejector for the application of a microbial fuel cell. A direct visualization method with a high speed camera system was used to capture the horizontal mixed jet images, and a binarization technique was used to analyze the images. The clean water unsteady state technique was used for the oxygen transfer measurement. The air-water mixed jet discharging into a water tank behaved similar to a buoyancy or horizontal jet with the primary nozzle area ratio. It was found that an optimum primary nozzle area ratio was observed where the oxygen transfer performance reached its maximum value due to the decrease of air volume fraction and the increase of jet length and air bubble dispersion.

A Numerical Study on the Effects of SOFA on NOx Emission Reduction in 500MW Class Sub-bituminous Coal-Fired Boiler (500MW급 아역청탄 전소 보일러의 NOx 배출저감에 미치는 SOFA 영향에 관한 연구)

  • Kang, Ki-Tae;Song, Ju-Hun;Yoon, Min-Ji;Lee, Byoung-Hwa;Kim, Seung-Mo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.858-868
    • /
    • 2009
  • A numerical investigation has been carried out about the performance of a 500MW class tangentially coal-fired boiler, focusing on the optimization of separated overfire air (SOFA) position to reduce NOx emission. For this purpose, a comprehensive combination of NOx chemistry models has been employed in the numerical simulation of a particle-laden flow along with solid fuel combustion and heat and mass transfer. A reasonable agreement has been shown in baseline cases for predicted operational parameters compared with experimental data measured in the boiler. A further SOFA calculation has been made to obtain optimum elevation and position of SOFA port. Additionally, clarifying on the effect of SOFA on NOx emission has been carried out in the coal-fired boiler. As a result, this paper is valuable to provide an information about the optimum position of SOFA and the mechanism by which the SOFA would affect NOx emission.

Study on the Development System of Rotary Atomizing Painting Equipment and Its Application (회전무화형 도장 기기의 개발체계 및 적용에 관한 연구)

  • Lee, Chan;Cha, SangWon
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2002
  • Concurrent development system which includes design, analysis, basic experiment and performance test procedure for rotary atomizing painting equipment was established. Basic design specifications of the equipment parts were determined according to the overall design requirements of painting equipment using conceptual design model. On the basis of derived design specifications, design and analysis procedures was proposed for developing each equipment part. Also proposed are experiment and test methods to investigate the spray and transfer characteristics of designed painting equipment, and their measurement variable, process and evaluation criteria are constructed. The present development system was validated by applying its entire processes to the actual painting equipment.

  • PDF

Photocatalytic Systems of Pt Nanoparticles and Molecular Co Complexes for NADH Regeneration and Enzyme-coupled CO2 Conversion

  • Kim, Ellen;Jeon, Minkyung;Kim, Soojin;Yadav, Paras Nath;Jeong, Kwang-Duk;Kim, Jinheung
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 2013
  • Natural photosynthesis utilizes solar energy to convert carbon dioxide and water to energy-rich carbohydrates. Substantial use of sunlight to meet world energy demands requires energy storage in useful fuels via chemical bonds because sunlight is intermittent. Artificial photosynthesis research focuses the fundamental natural process to design solar energy conversion systems. Nicotinamide adenine dinucleotide ($NAD^+$) and $NADP^+$ are ubiquitous as electron transporters in biological systems. Enzymatic, chemical, and electrochemical methods have been reported for NADH regeneration. As photochemical systems, visible light-driven catalytic activity of NADH regeneration was carried out using platinum nanoparticles, molecular rhodium and cobalt complexes in the presence of triethanolamine as a sacrificial electron donor. Pt nanoparticles showed photochemical NADH regeneration activity without additional visible light collector molecules, demonstrating that both photoactivating and catalytic activities exist together in Pt nanoparticles. The NADH regeneration of the Pt nanoparticle system was not interfered with the reduction of $O_2$. Molecular cobalt complexes containing dimethylglyoxime ligands also transfer their hydrides to $NAD^+$ with photoactivation of eosin Y in the presence of TEOA. In this photocatalytic reaction, the $NAD^+$ reduction process competed with a proton reduction.