• Title/Summary/Keyword: classifiers

Search Result 743, Processing Time 0.026 seconds

Face Recognition using Eigenface (고유얼굴에 의한 얼굴인식)

  • 박중조;김경민
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 2001
  • Eigenface method in face recognition is useful due to its insensitivity to large variations in facial expression and facial details. However its low recognition rate necessitates additional researches. In this paper, we present an efficient method for improving the recognition rate in face recognition using eigenface feature. For this, we performs a comparative study of three different classifiers which are i) a single prototype (SP) classifier, ii) a nearest neighbor (NN) classifier, and iii) a standard feedforward neural network (FNN) classifier. By evaluating and analyzing the performance of these three classifiers, we shows that the distribution of eigenface features of face image is not compact and that selections of classifier and sample training data are important for obtaining higher recognition rate. Our experiments with the ORL face database show that 1-NN classifier outperforms the SP and FNN classifiers. We have achieved a recognition rate of 91.0% by selecting sample trainging data properly and using 1-NN classifier.

  • PDF

Improving an Ensemble Model by Optimizing Bootstrap Sampling (부트스트랩 샘플링 최적화를 통한 앙상블 모형의 성능 개선)

  • Min, Sung-Hwan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 2016
  • Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving prediction accuracy. Bagging is one of the most popular ensemble learning techniques. Bagging has been known to be successful in increasing the accuracy of prediction of the individual classifiers. Bagging draws bootstrap samples from the training sample, applies the classifier to each bootstrap sample, and then combines the predictions of these classifiers to get the final classification result. Bootstrap samples are simple random samples selected from the original training data, so not all bootstrap samples are equally informative, due to the randomness. In this study, we proposed a new method for improving the performance of the standard bagging ensemble by optimizing bootstrap samples. A genetic algorithm is used to optimize bootstrap samples of the ensemble for improving prediction accuracy of the ensemble model. The proposed model is applied to a bankruptcy prediction problem using a real dataset from Korean companies. The experimental results showed the effectiveness of the proposed model.

Effective Fingerprint Classification using Subsumed One-Vs-All Support Vector Machines and Naive Bayes Classifiers (포섭구조 일대다 지지벡터기계와 Naive Bayes 분류기를 이용한 효과적인 지문분류)

  • Hong, Jin-Hyuk;Min, Jun-Ki;Cho, Ung-Keun;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.886-895
    • /
    • 2006
  • Fingerprint classification reduces the number of matches required in automated fingerprint identification systems by categorizing fingerprints into a predefined class. Support vector machines (SVMs), widely used in pattern classification, have produced a high accuracy rate when performing fingerprint classification. In order to effectively apply SVMs to multi-class fingerprint classification systems, we propose a novel method in which SVMs are generated with the one-vs-all (OVA) scheme and dynamically ordered with $na{\ddot{i}}ve$ Bayes classifiers. More specifically, it uses representative fingerprint features such as the FingerCode, singularities and pseudo ridges to train the OVA SVMs and $na{\ddot{i}}ve$ Bayes classifiers. The proposed method has been validated on the NIST-4 database and produced a classification accuracy of 90.8% for 5-class classification. Especially, it has effectively managed tie problems usually occurred in applying OVA SVMs to multi-class classification.

Solving Multi-class Problem using Support Vector Machines (Support Vector Machines을 이용한 다중 클래스 문제 해결)

  • Ko, Jae-Pil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1260-1270
    • /
    • 2005
  • Support Vector Machines (SVM) is well known for a representative learner as one of the kernel methods. SVM which is based on the statistical learning theory shows good generalization performance and has been applied to various pattern recognition problems. However, SVM is basically to deal with a two-class classification problem, so we cannot solve directly a multi-class problem with a binary SVM. One-Per-Class (OPC) and All-Pairs have been applied to solve the face recognition problem, which is one of the multi-class problems, with SVM. The two methods above are ones of the output coding methods, a general approach for solving multi-class problem with multiple binary classifiers, which decomposes a complex multi-class problem into a set of binary problems and then reconstructs the outputs of binary classifiers for each binary problem. In this paper, we introduce the output coding methods as an approach for extending binary SVM to multi-class SVM and propose new output coding schemes based on the Error-Correcting Output Codes (ECOC) which is a dominant theoretical foundation of the output coding methods. From the experiment on the face recognition, we give empirical results on the properties of output coding methods including our proposed ones.

Design of SVM-Based Polynomial Neural Networks Classifier Using Particle Swarm Optimization (입자군집 최적화를 이용한 SVM 기반 다항식 뉴럴 네트워크 분류기 설계)

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1071-1079
    • /
    • 2018
  • In this study, the design methodology as well as network architecture of Support Vector Machine based Polynomial Neural Network, which is a kind of the dynamically generated neural networks, is introduced. The Support Vector Machine based polynomial neural networks is given as a novel network architecture redesigned with the aid of polynomial neural networks and Support Vector Machine. The generic polynomial neural networks, whose nodes are made of polynomials, are dynamically generated in each layer-wise. The individual nodes of the support vector machine based polynomial neural networks is constructed as a support vector machine, and the nodes as well as layers of the support vector machine based polynomial neural networks are dynamically generated as like the generation process of the generic polynomial neural networks. Support vector machine is well known as a sort of robust pattern classifiers. In addition, in order to enhance the structural flexibility as well as the classification performance of the proposed classifier, multi-objective particle swarm optimization is used. In other words, the optimization algorithm leads to sequentially successive generation of each layer of support vector based polynomial neural networks. The bench mark data sets are used to demonstrate the pattern classification performance of the proposed classifiers through the comparison of the generalization ability of the proposed classifier with some already studied classifiers.

An Active Co-Training Algorithm for Biomedical Named-Entity Recognition

  • Munkhdalai, Tsendsuren;Li, Meijing;Yun, Unil;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.575-588
    • /
    • 2012
  • Exploiting unlabeled text data with a relatively small labeled corpus has been an active and challenging research topic in text mining, due to the recent growth of the amount of biomedical literature. Biomedical named-entity recognition is an essential prerequisite task before effective text mining of biomedical literature can begin. This paper proposes an Active Co-Training (ACT) algorithm for biomedical named-entity recognition. ACT is a semi-supervised learning method in which two classifiers based on two different feature sets iteratively learn from informative examples that have been queried from the unlabeled data. We design a new classification problem to measure the informativeness of an example in unlabeled data. In this classification problem, the examples are classified based on a joint view of a feature set to be informative/non-informative to both classifiers. To form the training data for the classification problem, we adopt a query-by-committee method. Therefore, in the ACT, both classifiers are considered to be one committee, which is used on the labeled data to give the informativeness label to each example. The ACT method outperforms the traditional co-training algorithm in terms of f-measure as well as the number of training iterations performed to build a good classification model. The proposed method tends to efficiently exploit a large amount of unlabeled data by selecting a small number of examples having not only useful information but also a comprehensive pattern.

Genetic Algorithm Based Attribute Value Taxonomy Generation for Learning Classifiers with Missing Data (유전자 알고리즘 기반의 불완전 데이터 학습을 위한 속성값계층구조의 생성)

  • Joo Jin-U;Yang Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.133-138
    • /
    • 2006
  • Learning with Attribute Value Taxonomies (AVT) has shown that it is possible to construct accurate, compact and robust classifiers from a partially missing dataset (dataset that contains attribute values specified with different level of precision). Yet, in many cases AVTs are generated from experts or people with specialized knowledge in their domain. Unfortunately these user-provided AVTs can be time-consuming to construct and misguided during the AVT building process. Moreover experts are occasionally unavailable to provide an AVT for a particular domain. Against these backgrounds, this paper introduces an AVT generating method called GA-AVT-Learner, which finds a near optimal AVT with a given training dataset using a genetic algorithm. This paper conducted experiments generating AVTs through GA-AVT-Learner with a variety of real world datasets. We compared these AVTs with other types of AVTs such as HAC-AVTs and user-provided AVTs. Through the experiments we have proved that GA-AVT-Learner provides AVTs that yield more accurate and compact classifiers and improve performance in learning missing data.

An Analysis of the Class 'Philosophy' in tile 4th Revised and Enlarged Edition of KDC (한국십진분류법 치4판 철학류의 분석)

  • Park Ok-Wha
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.31 no.3
    • /
    • pp.7-22
    • /
    • 1997
  • Korean Library Association brought out the fourth revised and enlarged edition of KDC last year. Compared with the former edition It Is a marked improvement. Neverthless, it leaves much room for improvement. In order to examine and evaluate the edition more effectively, I confined my study to the class 'Philosophy'. In my judgment the problem resolves itself into following three points: 1) Each regions, blanches of philosophy is not properly balanced. As is generally known KDC was originally derived from DDC. As a result KDC and DBC are similiar with regard to their stress on the philosophical tradition of the West. In consequence, it is lacking in universality. 2) The classifiers neglected on several occassions the logical regulations of classification. The vertical and horizontal relations between the subjects are not strictly respected. 3) The persons concerned were not well informed of philosophical conceptions and genealogies. There are some misused conceptions and disorganized genealogies of philosophy. To my knowledge these problems originate in the lack of professional understanding of philosophy necessary to make the work satisfactory As a result of the examination I came to the conclusion that it is inevitable for the classifiers, to ask to specialists in philosophy for mutual cooperation. Without their professional advices the classifiers will find difficulty in solving the problems and in improving the classification

  • PDF

A Supervised Feature Selection Method for Malicious Intrusions Detection in IoT Based on Genetic Algorithm

  • Saman Iftikhar;Daniah Al-Madani;Saima Abdullah;Ammar Saeed;Kiran Fatima
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.49-56
    • /
    • 2023
  • Machine learning methods diversely applied to the Internet of Things (IoT) field have been successful due to the enhancement of computer processing power. They offer an effective way of detecting malicious intrusions in IoT because of their high-level feature extraction capabilities. In this paper, we proposed a novel feature selection method for malicious intrusion detection in IoT by using an evolutionary technique - Genetic Algorithm (GA) and Machine Learning (ML) algorithms. The proposed model is performing the classification of BoT-IoT dataset to evaluate its quality through the training and testing with classifiers. The data is reduced and several preprocessing steps are applied such as: unnecessary information removal, null value checking, label encoding, standard scaling and data balancing. GA has applied over the preprocessed data, to select the most relevant features and maintain model optimization. The selected features from GA are given to ML classifiers such as Logistic Regression (LR) and Support Vector Machine (SVM) and the results are evaluated using performance evaluation measures including recall, precision and f1-score. Two sets of experiments are conducted, and it is concluded that hyperparameter tuning has a significant consequence on the performance of both ML classifiers. Overall, SVM still remained the best model in both cases and overall results increased.

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.