This text was analyzed and investigated the vegetation and floristic composition by ordination and classification of phytosociological method, to evaluate the species composition and community structure of Cymbidium goeringii group in Korean islets. In habitat of 33 plots, the mean altitude was 65.9m, the direction was the southeast slope, the mean slope was 7.9%. The coverage of Cymbidium goeringii was 4.5%. The appearing plants with the Cymbidium goeringii was the total 102 taxa, and it was the kind of trees 68 taxa (66.7%), herbs 34 taxa (33.3%), evergreen plants 36 taxa (35.3%) and deciduous plants 66 taxa (64.7 %) respectively. The frequency of appearing plant was the highest in the Eurya japonica (48.5%), followed by Pinus thunbergii (45.5%), Smilax china (36.4%), Carex lanceolata (33.3%), Hedera rhombea (33.3%), Machilus thunbergii (30.0%), Styrax japonicus (30.3%) and Pinus densiflora (27.3%), respectively. The vegetation of tree layer in Cymbidium goeringii group was classified into Pinus thunbergii community, Pinus densiflora community, Castanopsis sieboldii community and Quercus variabilis community. Pinus densiflora community showed a strong combination with Cymbidium goeringii group in Korean islets. Pinus thunbergii community among communities was combined with Castanopsis sieboldii community, and Pinus densiflora community and Quercus variabilis community were combined.
This is descriptive study to 2nd analysis data KNHANES IV-VI about risk factors of readmission among patients with cardiovascular disease. Among the total 65,973 adults, 1,037 with angina or myocardial infarction were analyzed. The analysis was conducted using SPSS window 21 Program and CHAID decision tree was used in the classification analysis. Root nodes are economic activity(χ2=12.063, p=.001), children's nodes are personal income(χ2=6.575, p=.031), weight change(χ2=12.758, p=.001), residential area(χ2=4.025, p=.045), direct smoking(χ2=3.884, p=.031). p=.049), level of education(χ2=9.630, p=.024). Terminal nodes are hypertension(χ2=3.854, p=.050), diabetes mellitus(χ2=6.056, p=.014), occupation type(χ2=7.799, p=.037). We suggest that the development and operation of programs considering the integrated approach of various factors is necessary for the readmission management of cardiovascular patients.
Predicting a company's financial bankruptcy is traditionally one of the most crucial forecasting problems in business analytics. In previous studies, prediction models have been proposed by applying or combining statistical and machine learning-based techniques. In this paper, we propose a novel intelligent prediction model based on the simulated annealing which is one of the well-known optimization techniques. The simulated annealing is known to have comparable optimization performance to the genetic algorithms. Nevertheless, since there has been little research on the prediction and classification of business decision-making problems using the simulated annealing, it is meaningful to confirm the usefulness of the proposed model in business analytics. In this study, we use the combined model of simulated annealing and machine learning to select the input features of the bankruptcy prediction model. Typical types of combining optimization and machine learning techniques are feature selection, feature weighting, and instance selection. This study proposes a combining model for feature selection, which has been studied the most. In order to confirm the superiority of the proposed model in this study, we apply the real-world financial data of the Korean companies and analyze the results. The results show that the predictive accuracy of the proposed model is better than that of the naïve model. Notably, the performance is significantly improved as compared with the traditional decision tree, random forests, artificial neural network, SVM, and logistic regression analysis.
Currently, the natural monument system of Korea for naming and designation of natural monuments is based on "Chosun Natural Monument Conservation Acts for Treasure, Ancient Landmark, and Natural Beauty" enacted in 1934 during Japanese colonization period. The framework of natural monument system is still in effect, which is pointed out as a problem. The Dangsan forests and Bibo forests are Korean traditional cultural resources representing countryside of Korea. Cultural Heritage Administration follows and relies on the 'Limsu of Chosun' (1938), a report written by a Japanese, for naming and classification of natural monuments. A Dangsan forest at Yesong-ri was named "Yesong-ri evergreen forest" in 1938. They followed the naming system of "evergeen forest" until today. The objective of this study is to review the issues and problems of 'Limsu of Chosun' and natural monument naming system begun during Japanese occupation period, and suggest an alternative to the current situation where naming natural monument accordingly without discretion. Eighteen dangsan forests bibo forests were selected for examination and analysis. The names of the dangsan forests bibo forests were evaluated to find out whether various aspects of the forests are reflected in the name. The study suggests that many forests and old trees designated as natural monument should be named as "~Dangsan forest", "~Dangsan forest Bibo forest", or "~Dangsan tree" with consistency accordingly. The new names will bring a momentum to overcome the limitation of natural monument naming system continued since Japanese occupation period, and also enhance the value of Dangsan forests and Bibo forests as Korean traditional and cultural landscapes.
Kim, Yangji;Song, Kukman;Yim, Eunyoung;Seo, Yeonok;Choi, Hyungsoon;Choi, Byoungki
Journal of Ecology and Environment
/
v.44
no.4
/
pp.275-285
/
2020
Background: In Korea, Symplocos prunifolia Siebold. & Zucc. is only found on Jeju Island. Conservation of the species is difficult because little is known about its distribution and natural habitat. The lack of research and survey data on the characteristics of native vegetation and distribution of this species means that there is insufficient information to guide the management and conservation of this species and related vegetation. Therefore, this study aims to identify the distribution and vegetation associated with S. prunifolia. Results: As a result of field investigations, it was confirmed that the native S. prunifolia communities were distributed in 4 areas located on the southern side of Mt. Halla and within the evergreen broad-leaved forest zones. Furthermore, these evergreen broad-leaved forest zones are themselves located in the warm temperate zone which are distributed along the valley sides at elevations between 318 and 461 m. S. prunifolia was only found on the south side of Mt. Halla, and mainly on south-facing slopes; however, small communities were found to be growing on northwest-facing slopes. It has been confirmed that S. prunifolia trees are rare but an important constituent species in the evergreen broad-leaved forest of Jeju. The mean importance percentage of S. prunifolia community was 48.84 for Castanopsis sieboldii, 17.79 for Quercus acuta, and 12.12 for Pinus thunbergii; S. prunifolia was the ninth most important species (2.6). Conclusions: S. prunifolia can be found growing along the natural streams of Jeju, where there is little anthropogenic influence and where the streams have caused soil disturbance through natural processes of erosion and deposition of sediments. Currently, the native area of S. prunifolia is about 3300 ㎡, which contains a confirmed population of 180 individual plants. As a result of these low population sizes, it places it in the category of an extremely endangered plant in Korea. In some native sites, the canopy of evergreen broad-leaved forest formed, but the frequency and coverage of species were not high. Negative factors that contributed to the low distribution of this species were factors such as lacking in shade tolerance, low fruiting rates, small native areas, and special habitats as well as requiring adequate stream disturbance. Presently, due to changes in climate, it is unclear whether this species will see an increase in its population and habitat area or whether it will remain as an endangered species within Korea. What is clear, however, is that the preservation of the present native habitats and population is extremely important if the population is to be maintained and expanded. It is also meaningful in terms of the stable conservation of biodiversity in Korea. Therefore, based on the results of this study, it is judged that a systematic evaluation for the preservation and conservation of the habitat and vegetation management method of S. prunifolia should be conducted.
Fraudulent companies or sellers strategically manipulate reviews to influence customers' purchase decisions; therefore, the reliability of reviews has become crucial for customer decision-making. Since customers increasingly rely on online reviews to search for more detailed information about products or services before purchasing, many researchers focus on detecting manipulated reviews. However, the main problem in detecting manipulated reviews is the difficulties with obtaining data with manipulated reviews to utilize machine learning techniques with sufficient data. Also, the number of manipulated reviews is insufficient compared with the number of non-manipulated reviews, so the class imbalance problem occurs. The class with fewer examples is under-represented and can hamper a model's accuracy, so machine learning methods suffer from the class imbalance problem and solving the class imbalance problem is important to build an accurate model for detecting manipulated reviews. Thus, we propose an OpenAI-based reviews generation model to solve the manipulated reviews imbalance problem, thereby enhancing the accuracy of manipulated reviews detection. In this research, we applied the novel autoregressive language model - GPT-3 to generate reviews based on manipulated reviews. Moreover, we found that applying GPT-3 model for oversampling manipulated reviews can recover a satisfactory portion of performance losses and shows better performance in classification (logit, decision tree, neural networks) than traditional oversampling models such as random oversampling and SMOTE.
Yokjido is a 15-km2 inhabited island located at the tip of the southeastern coast of the Korean Peninsula. Its forest is mostly composed of substitutional vegetation. Our aim was to provide basic information necessary for the conservation and management of the forest vegetation in Yokjido. We classified the types of existing vegetation using methods of the Zurich-Montpellier school of phytosociology. The resulting vegetation map shows the dominant tree species in the top canopy-layer. A total of 8 vegetation types were identified, which were arranged into a vegetation unit hierarchy of 2 communities, 4 sub-communities, 6 variants, and 2 subvariants. Evaluations of each type showed large and small differences in floristic composition, which reflect anthropogenic influences, site conditions, succession stages, and the establishment period. Moreover, vegetation types differed significantly in terms of species diversity indices; in particular, overall species richness, species diversity, and species evenness tended to increase significantly as the elevation increased. The herbaceous plant species showed the highest positive (+) correlation to x. These results were consistent with those of McCain, who reported that species diversity increases in mountainous areas with relatively low elevations due to the mid-domain effect. The forest succession in Yokjido will potentially enter a mixed-forest stage and then proceed to become an all-evergreen broad-leaved forest.
Jin, Kiok;Lee, Min Hee;Yoon, Min A;Kim, Hwa Jung;Kim, Wanlim;Chee, Choong Geun;Chung, Hye Won;Lee, Sang Hoon;Shin, Myung Jin
Investigative Magnetic Resonance Imaging
/
v.26
no.1
/
pp.20-31
/
2022
Purpose: To assess conventional MRI features associated with residual soft-tissue sarcomas following unplanned excision (UPE), and to compare the diagnostic performance of conventional MRI only with that of MRI including diffusion-weighted imaging (DWI) for residual tumors after UPE. Materials and Methods: We included 103 consecutive patients who had received UPE of a soft-tissue sarcoma with wide excision of the tumor bed between December 2013 and December 2019 and who also underwent conventional MRI and DWI in this retrospective study. The presence of focal enhancement, soft-tissue edema, fascial enhancement, fluid collections, and hematoma on MRI including DWI was reviewed by two musculoskeletal radiologists. We used classification and regression tree (CART) analysis to identify the most significant MRI features. We compared the diagnostic performances of conventional MRI and added DWI using the McNemar test. Results: Residual tumors were present in 69 (66.9%) of 103 patients, whereas no tumors were found in 34 (33.1%) patients. CART showed focal enhancement to be the most significant predictor of residual tumors and correctly predicted residual tumors in 81.6% (84/103) and 78.6% (81/103) of patients for Reader 1 and Reader 2, respectively. Compared with conventional MRI only, the addition of DWI for Reader 1 improved specificity (32.8% vs. 56%, 33.3% vs. 63.0%, P < 0.05), decreased sensitivity (96.8% vs. 84.1%, 98.7% vs. 76.7%, P < 0.05), without a difference in diagnostic accuracy (76.7% vs. 74.8%, 72.9% vs. 71.4%) in total and in subgroups. For Reader 2, diagnostic performance was not significantly different between the sets of MRI (P > 0.05). Conclusion: After UPE of a soft-tissue sarcoma, the presence or absence of a focal enhancement was the most significant MRI finding predicting residual tumors. MRI provided good diagnostic accuracy for detecting residual tumors, and the addition of DWI to conventional MRI may increase specificity.
The present study was tried to identify whether the eel's larva was close to a conger (Conger myriaster), a pipe conger (Muraenesox cinereus) or four species of Anguilla. Experimental fishes were collected by set net in the gulf of enggang, Namhae, Korea from May to June. Their morphological characteristics were compared with adult fishes of a conger, a pipe conger and four species of Anguilla. For genetic classification, DNA was isolated and amplified by using 12S rRNA and 16S rRNA primer set. The PCR products were direct sequencing in both directions. The nucleotide sequences were analyzed using softwares. As results of morphological measurement on eel's larva, the percentages of head length and preanal length against total length were similar with a conger. Based on the nucleotide sequences, the phylogenetic tree also revealed a close relationship to a conger. Therefore, eel's larva, caught in Namhae from May to June, was identified into a conger's larva.
Social media-based communication has become crucial part of our personal and official lives. Therefore, it is no surprise that social media sentiment analysis has emerged an important way of detecting potential customers' sentiment trends for all kinds of companies. However, social media sentiment analysis suffers from huge number of sentiment features obtained in the process of conducting the sentiment analysis. In this sense, this study proposes a novel method by using Bayesian Network. In this model MBFS (Markov Blanket-based Feature Selection) is used to reduce the number of sentiment features. To show the validity of our proposed model, we utilized online review data from Yelp, a famous social media about restaurant, bars, beauty salons evaluation and recommendation. We used a number of benchmarking feature selection methods like correlation-based feature selection, information gain, and gain ratio. A number of machine learning classifiers were also used for our validation tasks, like TAN, NBN, Sons & Spouses BN (Bayesian Network), Augmented Markov Blanket. Furthermore, we conducted Bayesian Network-based what-if analysis to see how the knowledge map between target node and related explanatory nodes could yield meaningful glimpse into what is going on in sentiments underlying the target dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.