• Title/Summary/Keyword: classification tree

Search Result 939, Processing Time 0.026 seconds

Detection of Individual Tree Species Using Object-Based Classification Method with Unmanned Aerial Vehicle (UAV) Imagery

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.181-188
    • /
    • 2019
  • This study was performed to construct tree species classification map according to three information types (spectral information, texture information, and spectral and texture information) by altitude (30 m, 60 m, 90 m) using the unmanned aerial vehicle images and the object-based classification method, and to evaluate the concordance rate through field survey data. The object-based, optimal weighted values by altitude were 176 for 30 m images, 111 for 60 m images, and 108 for 90 m images in the case of Scale while 0.4/0.6, 0.5/0.5, in the case of the shape/color and compactness/smoothness respectively regardless of the altitude. The overall accuracy according to the type of information by altitude, the information on spectral and texture information was about 88% in the case of 30 m and the spectral information was about 98% and about 86% in the case of 60 m and 90 m respectively showing the highest rates. The concordance rate with the field survey data per tree species was the highest with about 92% in the case of Pinus densiflora at 30 m, about 100% in the case of Prunus sargentii Rehder tree at 60 m, and about 89% in the case of Robinia pseudoacacia L. at 90 m.

Optimization of Decision Tree for Classification Using a Particle Swarm

  • Cho, Yun-Ju;Lee, Hye-Seon;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.4
    • /
    • pp.272-278
    • /
    • 2011
  • Decision tree as a classification tool is being used successfully in many areas such as medical diagnosis, customer churn prediction, signal detection and so on. The main advantage of decision tree classifiers is their capability to break down a complex structure into a collection of simpler structures, thus providing a solution that is easy to interpret. Since decision tree is a top-down algorithm using a divide and conquer induction process, there is a risk of reaching a local optimal solution. This paper proposes a procedure of optimally determining thresholds of the chosen variables for a decision tree using an adaptive particle swarm optimization (APSO). The proposed algorithm consists of two phases. First, we construct a decision tree and choose the relevant variables. Second, we find the optimum thresholds simultaneously using an APSO for those selected variables. To validate the proposed algorithm, several artificial and real datasets are used. We compare our results with the original CART results and show that the proposed algorithm is promising for improving prediction accuracy.

Hierarchical Binary Search Tree (HBST) for Packet Classification (패킷 분류를 위한 계층 이진 검색 트리)

  • Chu, Ha-Neul;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3B
    • /
    • pp.143-152
    • /
    • 2007
  • In order to provide new value-added services such as a policy-based routing and the quality of services in next generation network, the Internet routers need to classify packets into flows for different treatments, and it is called a packet classification. Since the packet classification should be performed in wire-speed for every packet incoming in several hundred giga-bits per second, the packet classification becomes a bottleneck in the Internet routers. Therefore, high speed packet classification algorithms are required. In this paper, we propose an efficient packet classification architecture based on a hierarchical binary search fee. The proposed architecture hierarchically connects the binary search tree which does not have empty nodes, and hence the proposed architecture reduces the memory requirement and improves the search performance.

Improving Urban Vegetation Classification by Including Height Information Derived from High-Spatial Resolution Stereo Imagery

  • Myeong, Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.383-392
    • /
    • 2005
  • Vegetation classes, especially grass and tree classes, are often confused in classification when conventional spectral pattern recognition techniques are used to classify urban areas. This paper reports on a study to improve the classification results by using an automated process of considering height information in separating urban vegetation classes, specifically tree and grass, using three-band, high-spatial resolution, digital aerial imagery. Height information was derived photogrammetrically from stereo pair imagery using cross correlation image matching to estimate differential parallax for vegetation pixels. A threshold value of differential parallax was used to assess whether the original class was correct. The average increase in overall accuracy for three test stereo pairs was $7.8\%$, and detailed examination showed that pixels reclassified as grass improved the overall accuracy more than pixels reclassified as tree. Visual examination and statistical accuracy assessment of four test areas showed improvement in vegetation classification with the increase in accuracy ranging from $3.7\%\;to\;18.1\%$. Vegetation classification can, in fact, be improved by adding height information to the classification procedure.

Protein Disorder/Order Region Classification Using EPs-TFP Mining Method (EPs-TFP 마이닝 기법을 이용한 단백질 Disorder/Order 지역 분류)

  • Lee, Heon Gyu;Shin, Yong Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.6
    • /
    • pp.59-72
    • /
    • 2012
  • Since a protein displays its specific functions when disorder region of protein sequence transits to order region with provoking a biological reaction, the separation of disorder region and order region from the sequence data is urgently necessary for predicting three dimensional structure and characteristics of the protein. To classify the disorder and order region efficiently, this paper proposes a classification/prediction method using sequence data while acquiring a non-biased result on a specific characteristics of protein and improving the classification speed. The emerging patterns based EPs-TFP methods utilizes only the essential emerging pattern in which the redundant emerging patterns are removed. This classification method finds the sequence patterns of disorder region, such sequence patterns are frequently shown in disorder region but relatively not frequently in the order region. We expand P-tree and T-tree conceptualized TFP method into a classification/prediction method in order to improve the performance of the proposed algorithm. We used Disprot 4.9 and CASP 7 data to evaluate EPs-TFP technique, the results of order/disorder classification show sensitivity 73.6, specificity 69.51 and accuracy 74.2.

Adopting and Implementation of Decision Tree Classification Method for Image Interpolation (이미지 보간을 위한 의사결정나무 분류 기법의 적용 및 구현)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • With the development of display hardware, image interpolation techniques have been used in various fields such as image zooming and medical imaging. Traditional image interpolation methods, such as bi-linear interpolation, bi-cubic interpolation and edge direction-based interpolation, perform interpolation in the spatial domain. Recently, interpolation techniques in the discrete cosine transform or wavelet domain are also proposed. Using these various existing interpolation methods and machine learning, we propose decision tree classification-based image interpolation methods. In other words, this paper is about the method of adaptively applying various existing interpolation methods, not the interpolation method itself. To obtain the decision model, we used Weka's J48 library with the C4.5 decision tree algorithm. The proposed method first constructs attribute set and select classes that means interpolation methods for classification model. And after training, interpolation is performed using different interpolation methods according to attributes characteristics. Simulation results show that the proposed method yields reasonable performance.

Selection of Important Variables in the Classification Model for Successful Flight Training (조종사 비행훈련 성패예측모형 구축을 위한 중요변수 선정)

  • Lee, Sang-Heon;Lee, Sun-Doo
    • IE interfaces
    • /
    • v.20 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • The main purpose of this paper is cost reduction in absurd pilot positive expense and human accident prevention which is caused by in the pilot selection process. We use classification models such as logistic regression, decision tree, and neural network based on aptitude test results of 505 ROK Air Force applicants in 2001~2004. First, we determine the reliability and propriety against the aptitude test system which has been improved. Based on this conference flight simulator test item was compared to the new aptitude test item in order to make additional yes or no decision from different models in terms of classification accuracy, ROC and Response Threshold side. Decision tree was selected as the most efficient for each sequential flight training result and the last flight training results predict excellent. Therefore, we propose that the standard of pilot selection be adopted by the decision tree and it presents in the aptitude test item which is new a conference flight simulator test.

A New Decision Tree Algorithm Based on Rough Set and Entity Relationship (러프셋 이론과 개체 관계 비교를 통한 의사결정나무 구성)

  • Han, Sang-Wook;Kim, Jae-Yearn
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • We present a new decision tree classification algorithm using rough set theory that can induce classification rules, the construction of which is based on core attributes and relationship between objects. Although decision trees have been widely used in machine learning and artificial intelligence, little research has focused on improving classification quality. We propose a new decision tree construction algorithm that can be simplified and provides an improved classification quality. We also compare the new algorithm with the ID3 algorithm in terms of the number of rules.

Classification of Apple Tree Leaves Diseases using Deep Learning Methods

  • Alsayed, Ashwaq;Alsabei, Amani;Arif, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.324-330
    • /
    • 2021
  • Agriculture is one of the essential needs of human life on planet Earth. It is the source of food and earnings for many individuals around the world. The economy of many countries is associated with the agriculture sector. Lots of diseases exist that attack various fruits and crops. Apple Tree Leaves also suffer different types of pathological conditions that affect their production. These pathological conditions include apple scab, cedar apple rust, or multiple diseases, etc. In this paper, an automatic detection framework based on deep learning is investigated for apple leaves disease classification. Different pre-trained models, VGG16, ResNetV2, InceptionV3, and MobileNetV2, are considered for transfer learning. A combination of parameters like learning rate, batch size, and optimizer is analyzed, and the best combination of ResNetV2 with Adam optimizer provided the best classification accuracy of 94%.

Feature Selection Effect of Classification Tree Using Feature Importance : Case of Credit Card Customer Churn Prediction (특성중요도를 활용한 분류나무의 입력특성 선택효과 : 신용카드 고객이탈 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis, a model can be constructed with various machine learning algorithms, including decision tree. And feature importance has been utilized in selecting better input features that can improve performance of data analysis models for several application areas. In this paper, a method of utilizing feature importance calculated from the MDI method and its effects are investigated in the credit card customer churn prediction problem with classification trees. Compared with several random feature selections from case data, a set of input features selected from higher value of feature importance shows higher predictive power. It can be an efficient method for classifying and choosing input features necessary for improving prediction performance. The method organized in this paper can be an alternative to the selection of input features using feature importance in composing and using classification trees, including credit card customer churn prediction.