• Title/Summary/Keyword: classification map

Search Result 844, Processing Time 0.027 seconds

Study on Automated Land Cover Update Using Hyperspectral Satellite Image(EO-1 Hyperion) (초분광 위성영상 Hyperion을 활용한 토지피복지도 자동갱신 연구)

  • Jang, Se-Jin;Chae, Ok-Sam;Lee, Ho-Nam
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.383-387
    • /
    • 2007
  • The improved accuracy of the Land Cover/Land Use Map constructed using Hyperspectal Satellite Image and the possibility of real time classification of Land Use using optimal Band Selective Factor enable the change detection from automatic classification using the existed Land Cover/Land Use Map and the newly acquired Hyperspectral Satellite Image. In this study, the effective analysis techniques for automatic generation of training regions, automatic classification and automatic change detection are proposed to minimize the expert's interpretation for automatic update of the Land Cover/Land Use Map. The proposed algorithms performed successfully the automatic Land Cover/Land Use Map construction, automatic change detection and automatic update on the image which contained the changed region. It would increase applicability in actual services. Also, it would be expected to present the effective methods of constructing national land monitoring system.

  • PDF

Pattern Classification of the EMG Signals Using Neural Network (신경회로망을 이용한 EMC 신호의 패턴 분류)

  • 최용준;이현관;이승현;강성호;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.402-405
    • /
    • 2000
  • In this paper we propose a method ef pattern classification of the hand movement using EMG signals through Self-organizing feature map. Self-organizing feature map is an artificial neural network which organizes its output neuron through leaning and therefore it can classify input patterns. The raw EMC signals become direct input to the Self-organizing feature map. The simulation and experiment results showed the effectiveness of the classification of EMG signal using the Self-organizing feature map.

  • PDF

Simple SOM Method for Pattern Classification of the EMG Signals (EMG 신호의 패턴 분류를 위한 간단한 SOM 방식)

  • Lim, Joong-Kyu;Eom, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.4
    • /
    • pp.31-36
    • /
    • 2001
  • In this paper we propose a method of pattern classification of the hand movement using EMG signals through Self-organizing feature map. Self-organizing feature map is an artificial neural network which organizes its output neuron through learning and therefore it can classify input patterns. The raw EMG signals become direct input to the Self-organizing feature map. The simulation and experiment results showed the effectiveness of the classification of EMG signal using the Self-organizing feature map.

  • PDF

Material Image Classification using Normal Map Generation (Normal map 생성을 이용한 물질 이미지 분류)

  • Nam, Hyeongil;Kim, Tae Hyun;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.69-79
    • /
    • 2022
  • In this study, a method of generating and utilizing a normal map image used to represent the characteristics of the surface of an image material to improve the classification accuracy of the original material image is proposed. First of all, (1) to generate a normal map that reflects the surface properties of a material in an image, a U-Net with attention-R2 gate as a generator was used, and a Pix2Pix-based method using the generated normal map and the similarity with the original normal map as a reconstruction loss was used. Next, (2) we propose a network that can improve the accuracy of classification of the original material image by applying the previously created normal map image to the attention gate of the classification network. For normal maps generated using Pixar Dataset, the similarity between normal maps corresponding to ground truth is evaluated. In this case, the results of reconstruction loss function applied differently according to the similarity metrics are compared. In addition, for evaluation of material image classification, it was confirmed that the proposed method based on MINC-2500 and FMD datasets and comparative experiments in previous studies could be more accurately distinguished. The method proposed in this paper is expected to be the basis for various image processing and network construction that can identify substances within an image.

Effects of Vehicle Classification Methods on Noise Prediction Results of Road Traffic Noise Map (소음지도 제작 시 차량 분류방법이 소음도 예측 결과에 미치는 영향 연구)

  • Kim, Ji-Yoon;Park, In-Sun;Jung, Woo-Hong;Park, Sang-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.872-876
    • /
    • 2007
  • Road traffic noise map is effective method to save cost and time for environmental noise assessment. Generally, noise is calculated by using theoretical equation of noise prediction, and the calculated result can be influenced by various input factors. Especially, domestic vehicle classification method for traffic flow and heavy vehicle percentage is different from that of foreign countries. Thus, this can cause effect on the noise prediction results. In this study, noise prediction results by using domestic vehicle classification method are compared with those by foreign methods.

  • PDF

Effects of Vehicle Classification Methods on Noise Prediction Results of Road Traffic Noise Map (소음지도 제작시 차량 분류방법이 소음도 예측 결과에 미치는 영향 연구)

  • Kim, Ji-Yoon;Park, In-Sun;Jung, Woo-Hong;Kang, Dae-Joon;Park, Sang-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.193-197
    • /
    • 2012
  • Road traffic noise map is effective method to save cost and time for environmental noise assessment. Generally, noise is calculated by using theoretical equation of noise prediction, and the calculated result can be influenced by various input factors. Especially, domestic vehicle classification method for traffic flow and heavy vehicle percentage is different from that of foreign countries. Thus, this can cause effect on the noise prediction results. In this study, noise prediction results by using domestic vehicle classification method are compared with those by foreign methods.

Cost Effective Mobility Anchor Point Selection Scheme for F-HMIPv6 Networks (F-HMIPv6 환경에서의 비용 효율적인 MAP 선택 기법)

  • Roh Myoung-Hwa;Jeong Choong-Kyo
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.265-271
    • /
    • 2006
  • In this paper, we propose a new automatic fingerprint identification system that identifies individuals in large databases. The algorithm consists of three steps: preprocessing, classification, and matching, in the classification, we present a new classification technique based on the statistical approach for directional image distribution. In matching, we also describe improved minutiae candidate pair extraction algorithm that is faster and more accurate than existing algorithm. In matching stage, we extract fingerprint minutiaes from its thinned image for accuracy, and introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection in comparison stage of two fingerprints quickly. This algorithm is invariant to translation and rotation of fingerprint. The proposed system was tested on 1000 fingerprint images from the semiconductor chip style scanner. Experimental results reveal false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

  • PDF

Terrain Classification for Enhancing Mobility of Outdoor Mobile Robot (실외 주행 로봇의 이동 성능 개선을 위한 지형 분류)

  • Kim, Ja-Young;Lee, Jong-Hwa;Lee, Ji-Hong;Kweon, In-So
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.339-348
    • /
    • 2010
  • One of the requirements for autonomous vehicles on off-road is to move stably in unstructured environments. Such capacity of autonomous vehicles is one of the most important abilities in consideration of mobility. So, many researchers use contact and/or non-contact methods to determine a terrain whether the vehicle can move on or not. In this paper we introduce an algorithm to classify terrains using visual information(one of the non-contacting methods). As a pre-processing, a contrast enhancement technique is introduced to improve classification of terrain. Also, for conducting classification algorithm, training images are grouped according to materials of the surface, and then Bayesian classification are applied to new images to determine membership to each group. In addition to the classification, we can build Traversability map specified by friction coefficients on which autonomous vehicles can decide to go or not. Experiments are made with Load-Cell to determine real friction coefficients of various terrains.

A Study on the Attributes Classification of Agricultural Land Based on Deep Learning Comparison of Accuracy between TIF Image and ECW Image (딥러닝 기반 농경지 속성분류를 위한 TIF 이미지와 ECW 이미지 간 정확도 비교 연구)

  • Kim, Ji Young;Wee, Seong Seung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.15-22
    • /
    • 2023
  • In this study, We conduct a comparative study of deep learning-based classification of agricultural field attributes using Tagged Image File (TIF) and Enhanced Compression Wavelet (ECW) images. The goal is to interpret and classify the attributes of agricultural fields by analyzing the differences between these two image formats. "FarmMap," initiated by the Ministry of Agriculture, Food and Rural Affairs in 2014, serves as the first digital map of agricultural land in South Korea. It comprises attributes such as paddy, field, orchard, agricultural facility and ginseng cultivation areas. For the purpose of comparing deep learning-based agricultural attribute classification, we consider the location and class information of objects, as well as the attribute information of FarmMap. We utilize the ResNet-50 instance segmentation model, which is suitable for this task, to conduct simulated experiments. The comparison of agricultural attribute classification between the two images is measured in terms of accuracy. The experimental results indicate that the accuracy of TIF images is 90.44%, while that of ECW images is 91.72%. The ECW image model demonstrates approximately 1.28% higher accuracy. However, statistical validation, specifically Wilcoxon rank-sum tests, did not reveal a significant difference in accuracy between the two images.

Study on Forest Functions Classification using GIS - Chunyang National Forest Management Planning - (GIS를 이용한 산림기능구분에 관한 연구 - 춘양 국유림 산림경영계획구를 대상으로 -)

  • Kwon, Soon-Duk;Park, Young-Kyu;Kim, Eun-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.10-21
    • /
    • 2008
  • A forest functions classification map is an essential element for the management planning of national forests. This study was intended to make out the map at the stand level by utilizing the Forest Functions Evaluation Program(FFEP), developed by Korea Forest Research Institute. In this program, the potential of each function was evaluated in each grid cell, and then a forest functions estimation map was generated based on the optimum grid cell values in each sub-compartment unit. Finally, the program produced a forest functions classification map with consideration of the priority of the functions. The final forest functions classification map required for the national forest management planning made out overlapping those results which the rest of the forest classified referring priority functions classification map to national forest manager and classified according to the local administrative guidance and sustainable forest resources management guidance. The results indicated that the forest function classification using the FFEP program could be an efficient tool for providing the data required for national forest management planning. Also this study made a meaningful progress in the forest function classification by considering the local forest administrative guidance and sustainable forest resources management guidance.

  • PDF