• 제목/요약/키워드: class of estimators

검색결과 76건 처리시간 0.022초

ESTIMATING VARIOUS MEASURES IN NORMAL POPULATION THROUGH A SINGLE CLASS OF ESTIMATORS

  • Sharad Saxena;Housila P. Singh
    • Journal of the Korean Statistical Society
    • /
    • 제33권3호
    • /
    • pp.323-337
    • /
    • 2004
  • This article coined a general class of estimators for various measures in normal population when some' a priori' or guessed value of standard deviation a is available in addition to sample information. The class of estimators is primarily defined for a function of standard deviation. An unbiased estimator and the minimum mean squared error estimator are worked out and the suggested class of estimators is compared with these classical estimators. Numerical computations in terms of percent relative efficiency and absolute relative bias established the merits of the proposed class of estimators especially for small samples. Simulation study confirms the excellence of the proposed class of estimators. The beauty of this article lies in estimation of various measures like standard deviation, variance, Fisher information, precision of sample mean, process capability index $C_{p}$, fourth moment about mean, mean deviation about mean etc. as particular cases of the proposed class of estimators.

A Class of Estimators for Population Variance in Two Occasion Rotation Patterns

  • Singh, G.N.;Priyanka, Priyanka;Prasad, Shakti;Singh, Sarjinder;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • 제20권4호
    • /
    • pp.247-257
    • /
    • 2013
  • A variety of practical problems can be addressed in the framework of rotation (successive) sampling. The present work presents a sample rotation pattern where sampling units are drawn on two successive occasions. The problem of estimation of population variance on current (second) occasion in two - occasion successive (rotation) sampling has been considered. A class of estimators has been proposed for population variance that includes many estimators as a particular case. Asymptotic properties of the proposed class of estimators are discussed. The proposed class of estimators is compared with the sample variance estimator when there is no matching from the previous occasion. Optimum replacement policy is discussed. Results are supported with the empirical means of comparison.

ASYMPTOTIC APPROXIMATION OF KERNEL-TYPE ESTIMATORS WITH ITS APPLICATION

  • Kim, Sung-Kyun;Kim, Sung-Lai;Jang, Yu-Seon
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.147-158
    • /
    • 2004
  • Sufficient conditions are given under which a generalized class of kernel-type estimators allows asymptotic approximation on the modulus of continuity. This generalized class includes sample distribution function, kernel-type estimator of density function, and an estimator that may apply to the censored case. In addition, an application is given to asymptotic normality of recursive density estimators of density function at an unknown point.

Asymptotic Approximation of Kernel-Type Estimators with Its Application

  • 장유선;김성래;김성균
    • 한국전산응용수학회:학술대회논문집
    • /
    • 한국전산응용수학회 2003년도 KSCAM 학술발표회 프로그램 및 초록집
    • /
    • pp.12.1-12
    • /
    • 2003
  • Sufficient conditions are given under which a generalized class of kernel-type estimators allows asymptotic approximation On the modulus of continuity This generalized class includes sample distribution function, kernel-type estimator of density function, and an estimator that may apply to the censored case. In addition, an application is given to asymptotic normality of recursive density estimators of density function at an unknown point.

  • PDF

Item sum techniques for quantitative sensitive estimation on successive occasions

  • Priyanka, Kumari;Trisandhya, Pidugu
    • Communications for Statistical Applications and Methods
    • /
    • 제26권2호
    • /
    • pp.175-189
    • /
    • 2019
  • The problem of the estimation of quantitative sensitive variable using the item sum technique (IST) on successive occasions has been discussed. IST difference, IST regression, and IST general class of estimators have been proposed to estimate quantitative sensitive variable at the current occasion in two occasion successive sampling. The proposed new estimators have been elaborated under Trappmann et al. (Journal of Survey Statistics and Methodology, 2, 58-77, 2014) as well as Perri et al. (Biometrical Journal, 60, 155-173, 2018) allocation designs to allocate long list and short list samples of IST. The properties of all proposed estimators have been derived including optimum replacement policy. The proposed estimators have been mutually compared under the above mentioned allocation designs. The comparison has also been conducted with a direct method. Numerical applications through empirical as well as simplistic simulation has been used to show how the illustrated IST on successive occasions may venture in practical situations.

A Note on Adaptive Estimation for Nonlinear Time Series Models

  • Kim, Sahmyeong
    • Journal of the Korean Statistical Society
    • /
    • 제30권3호
    • /
    • pp.387-406
    • /
    • 2001
  • Adaptive estimators for a class of nonlinear time series models has been proposed by several authors. Koul and Schick(1997) proposed the adaptive estimators without sample splitting for location-type time series models. They also showed by simulation that the adaptive estimators without sample splitting have smaller mean squared errors than those of the adaptive estimators with sample splitting. the present paper generalized the result in a case of location-scale type nonlinear time series models by simulation.

  • PDF

Quasi-Likelihood Estimation for ARCH Models

  • Kim, Sah-Myeong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권3호
    • /
    • pp.651-656
    • /
    • 2005
  • In this paper the quasi-likelihood function was proposed and the estimators which are the solutions of the estimating equations for estimation of a class of nonlinear time series models. We compare the performances of the proposed estimators with those of the ML estimators under the heavy-railed distributions by simulation.

  • PDF

A Note on the Small-Sample Calibration

  • So, Beong-Soo
    • 품질경영학회지
    • /
    • 제22권2호
    • /
    • pp.89-97
    • /
    • 1994
  • We consider the linear calibration model: $y_1={\alpha}+{\beta}x_i+{\sigma}{\varepsilon}_i$, i = 1, ${\cdots}$, n, $y={\alpha}+{\beta}x+{\sigma}{\varepsilon}$ where ($y_1$, ${\cdots}$, $y_n$, y) stands for an observation vector, {$x_i$} fixed design vector, (${\alpha}$, ${\beta}$) vector of regression parameters, x unknown true value of interest and {${\varepsilon}_i$}, ${\varepsilon}$ are mutually uncorrelated measurement errors with zero mean and unit variance but otherwise unknown distributions. On the basis of simple small-sample low-noise approximation, we introduce a new method of comparing the mean squared errors of the various competing estimators of the true value x for finite sample size n. Then we show that a class of estimators including the classical and the inverse estimators are consistent and first-order efficient within the class of all regular consistent estimators irrespective of type of measurement errors.

  • PDF

Hierarchical Bayes Estimators of the Error Variance in Balanced Fixed-Effects Two-Way ANOVA Models

  • Kim, Byung-Hwee;Dong, Kyung-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • 제6권2호
    • /
    • pp.487-500
    • /
    • 1999
  • We propose a class of hierarchical Bayes estimators of the error variance under the relative squared error loss in balanced fixed-effects two-way analysis of variance models. Also we provide analytic expressions for the risk improvement of the hierarchical Bayes estimators over multiples of the error sum of squares. Using these expressions we identify a subclass of the hierarchical Bayes estimators each member of which dominates the best multiple of the error sum of squares which is known to be minimax. Numerical values of the percentage risk improvement are given in some special cases.

  • PDF

Hierarchical Bayes Estimators of the Error Variance in Two-Way ANOVA Models

  • Chang, In Hong;Kim, Byung Hwee
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.315-324
    • /
    • 2002
  • For estimating the error variance under the relative squared error loss in two-way analysis of variance models, we provide a class of hierarchical Bayes estimators and then derive a subclass of the hierarchical Bayes estimators, each member of which dominates the best multiple of the error sum of squares which is known to be minimax. We also identify a subclass of non-minimax hierarchical Bayes estimators.