• 제목/요약/키워드: class algebra

검색결과 129건 처리시간 0.02초

ON δ-FRAMES

  • Lee, Seung On;Lee, Seok Jong;Choi, Eun Ai
    • 충청수학회지
    • /
    • 제10권1호
    • /
    • pp.43-56
    • /
    • 1997
  • In this paper, we introduce a new class of ${\delta}$-frames and study its properties. To do so, we introduce ${\delta}$-filters, almost Lindel$\ddot{o}$f frames and Lindel$\ddot{o}$f frames. First, we show that a complete chain or a complete Boolean algebra is a ${\delta}$-frame. Next, we show that a ${\delta}$-frame L is almost Lindel$\ddot{o}$f iff for any ${\delta}$-filter F in L, ${\vee}\{x^*\;:\;x{\in}F\}{\neq}e$. Last, we show that every regular Lindelof ${\delta}$-frame is normal and a Lindel$\ddot{o}$f ${\delta}$-frame is preserved under a ${\delta}$-isomorphism which is dense and codense.

  • PDF

Modeling and Scheduling of Cyclic Shops with Time Window Constraints

  • Seo, Jeong-Won;Lee, Tae-Eog
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2000년도 추계학술대회 및 정기총회
    • /
    • pp.161-164
    • /
    • 2000
  • A cyclic shop is a production system that repeatedly produces identical sets of jobs, called minimal part sets, in the same loading and processing sequence. We consider a version of cyclic shop where the operations are processed and unloaded within time limits, so called a time window. We model the shop using an event graph model, a class of Petri nets. To represent the time window constraint, we introduce places with negative time delays. From the shop modeling graph, we develop a linear system model based on the max- plus algebra and characterize the conditions on the existence of a stable schedule.

  • PDF

CLOSED IDEALS IN A SEMIFINITE, INFINITE VON NEUMANN ALGEBRA, ARISING FROM RELATIVE RANKS OF ITS ELEMENTS

  • Lee, Sa-Ge;Kim, Sang-Moon;Chi, Dong-Pyo
    • 대한수학회보
    • /
    • 제21권2호
    • /
    • pp.107-113
    • /
    • 1984
  • Throughout the paper let A be a semifinite, infinite von Neumann algebra acting on a Hilbert space H, .alpha. an infinite cardinal. The main purpose of our work is to give several characterizations of a class of closed ideals in A, by introducing the notions of relative ranks of elements in A and the relative .alpha.-topology on H. The relative .alphi.-topology is an analogue to the .alpha.-topology that we have defined in ([7], [8]). The present work is regarded as an extension of [7], [8] and motivated by works of M. Breuer ([1], [2]), V. Kaftal ([5], [6]) and M.G. Sonis [9].

  • PDF

CO-FUZZY ANNIHILATOR FILTERS IN DISTRIBUTIVE LATTICES

  • NORAHUN, WONDWOSEN ZEMENE;ZELEKE, YOHANNES NIGATIE
    • Journal of applied mathematics & informatics
    • /
    • 제39권3_4호
    • /
    • pp.569-585
    • /
    • 2021
  • In this paper, we introduce the concept of relative co-fuzzy annihilator filters in distributive lattices. We give a set of equivalent conditions for a co-fuzzy annihilator to be a fuzzy filter and we characterize distributive lattices with the help of co-fuzzy annihilator filters. Furthermore, using the concept of relative co-fuzzy annihilators, we prove that the class of fuzzy filters of distributive lattices forms a Heyting algebra. We also study co-fuzzy annihilator filters. It is proved that the set of all co-fuzzy annihilator filters forms a complete Boolean algebra.

ON THE GEOMETRY OF VECTOR BUNDLES WITH FLAT CONNECTIONS

  • Abbassi, Mohamed Tahar Kadaoui;Lakrini, Ibrahim
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1219-1233
    • /
    • 2019
  • Let $E{\rightarrow}M$ be an arbitrary vector bundle of rank k over a Riemannian manifold M equipped with a fiber metric and a compatible connection $D^E$. R. Albuquerque constructed a general class of (two-weights) spherically symmetric metrics on E. In this paper, we give a characterization of locally symmetric spherically symmetric metrics on E in the case when $D^E$ is flat. We study also the Einstein property on E proving, among other results, that if $k{\geq}2$ and the base manifold is Einstein with positive constant scalar curvature, then there is a 1-parameter family of Einstein spherically symmetric metrics on E, which are not Ricci-flat.

TRACE-CLASS INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo;Kang, Joo-Ho
    • 대한수학회보
    • /
    • 제39권1호
    • /
    • pp.63-69
    • /
    • 2002
  • Given vectors x and y in a Hilbert space, an intepolating operator is a bounded operator T such that Tx=y. an interpolating operator for n vectors satisfies the equation Tx$_{i}$=y, for i=1, 2,…, n. In this article, we obtained the fellowing : Let x = (x$_{i}$) and y = (y$_{i}$) be two vectors in H such that x$_{i}$$\neq$0 for all i = 1, 2,…. Then the following statements are equivalent. (1) There exists an operator A in AlgL such that Ax = y, A is a trace-class operator and every E in L reduces A. (2) (equation omitted).mitted).

GENERATION OF RAY CLASS FIELDS MODULO 2, 3, 4 OR 6 BY USING THE WEBER FUNCTION

  • Jung, Ho Yun;Koo, Ja Kyung;Shin, Dong Hwa
    • 대한수학회지
    • /
    • 제55권2호
    • /
    • pp.343-372
    • /
    • 2018
  • Let K be an imaginary quadratic field with ring of integers ${\mathcal{O}}_K$. Let E be an elliptic curve with complex multiplication by ${\mathcal{O}}_K$, and let $h_E$ be the Weber function on E. Let $N{\in}\{2,3,4,6\}$. We show that $h_E$ alone when evaluated at a certain N-torsion point on E generates the ray class field of K modulo $N{\mathcal{O}}_K$. This would be a partial answer to the question raised by Hasse and Ramachandra.

ON NONNIL-SFT RINGS

  • Ali Benhissi;Abdelamir Dabbabi
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.663-677
    • /
    • 2023
  • The purpose of this paper is to introduce a new class of rings containing the class of SFT-rings and contained in the class of rings with Noetherian prime spectrum. Let A be a commutative ring with unit and I be an ideal of A. We say that I is SFT if there exist an integer k ≥ 1 and a finitely generated ideal F ⊆ I of A such that xk ∈ F for every x ∈ I. The ring A is said to be nonnil-SFT, if each nonnil-ideal (i.e., not contained in the nilradical of A) is SFT. We investigate the nonnil-SFT variant of some well known theorems on SFT-rings. Also we study the transfer of this property to Nagata's idealization and the amalgamation algebra along an ideal. Many examples are given. In fact, using the amalgamation construction, we give an infinite family of nonnil-SFT rings which are not SFT.

매개변수 개념의 교수-학습에 관한 연구 (A Study on the Teaching-Learning of Parameter Concept)

  • 김남희
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제14권3호
    • /
    • pp.305-325
    • /
    • 2004
  • 본 논문은 학교수학에서 다루어지고 있는 매개변수 개념의 교수-학습에 관한 논의이다. 우리나라 수학교과서에서 매개변수 개념은 중학교 수준의 학습내용과 관련된 대수적 표현에서 자주 다루어지고 있음에도 불구하고 그 개념에 대한 용어 정의는 고등학교 선택교육과정 교과서에서 비로소 도입되고 있기 때문에 매개변수개념 이해를 위한 수학교사의 교수학적 노력이 요망된다. 본 논문에서는 학교현장에서 매개변수 개념의 지도를 위한 교수학적 시사점을 이끌어 내기 위해 매개변수의 개념 정의를 분석하고 우리나라 수학과 교육과정상에서 매개변수가 도입되는 맥락을 외국의 사례와 비교해서 검토한다. 또한 선행연구를 통해 대수학습의 관점에서 매개변수 개념 이해의 중요성을 확인하고 매개변수 개념이 학교수학에서 의미 있게 다루어져야 할 학습맥락에 대해 논의해 본다. 마지막으로 본 논문의 연구내용을 종합하여 매개변수 개념의 교수-학습을 위한 시사점을 요약하여 제시한다.

  • PDF

QUANTUM DYNAMICAL SEMIGROUP AND ITS ASYMPTOTIC BEHAVIORS

  • Choi, Veni
    • 대한수학회보
    • /
    • 제41권1호
    • /
    • pp.189-198
    • /
    • 2004
  • In this study we consider quantum dynamical semi-group with a normal faithful invariant state. A quantum dynamical semigroup $\alpha\;=\;\{{\alpha}_t\}_{t{\geq}0}$ is a class of linear normal identity-preserving mappings on a von Neumann algebra M with semigroup property and some positivity condition. We investigate the asymptotic behaviors of the semigroup such as ergodicity or mixing properties in terms of their eigenvalues under the assumption that the semigroup satisfies positivity. This extends the result of [13] which is obtained under the assumption that the semi group satisfy 2-positivity.