• 제목/요약/키워드: clamp

검색결과 1,112건 처리시간 0.023초

홍화의 생쥐 소장 및 대장 카할 간질세포의 향도잡이 전위 조절에 미치는 효능에 관한 연구 (Effects of Carthami flos on pacemaker potentials of small intestinal and colonic interstitial Cells of Cajal)

  • 김병주
    • 대한한의학방제학회지
    • /
    • 제27권4호
    • /
    • pp.237-244
    • /
    • 2019
  • Objectives : The purpose of this study was to investigate the effects of Carthami flos on pacemaker potentials of small intestinal and colonic Interstitial Cells of Cajal (ICC). Methods : To dissociate the ICC, we used enzymatic digestions from the small intestine and colon in mice. In the ICC, the electrophysiological whole-cell patch-clamp configuration was used to record pacemaker potentials in the cultured ICC. Results : 1. The ICC generated pacemaker potentials in the murine small intestine and colon. 2. Pretreatment with a Ca2+ free solution and thapsigargin, a Ca2+-ATPase inhibitor in the endoplasmic reticulum, stopped the pacemaker potentials. In the case of Ca2+-free solutions, Carthami flos did not induce membrane depolarizations in the murine small intestine and colon. However, when thapsigargin in a bath solution was applied, Carthami flos induced membrane depolarizations only in the murine colon. 3. Pretreatment with 2-APB (transient receptor potential melastatin (TRPM) channel inhibitor) abolished the pacemaker potentials and suppressed Carthami flos-induced effects in the murine small intestine and colon. 4. However, pretreatment with T16Ainh-AO1 (Ca2+ activated Cl- channel; anoctamin 1 (ANO1) inhibitor) did not affect the pacemaker potentials and induced Carthami flos-induced effects only in the murine small intestine. Conclusions : These results suggest that Carthami flos can modulate the pacemaker activity of ICC and the mechanisms underlying pacemaking in ICC might be different in the small intestine and the colon.

Identification and Functional Analysis of Mating Type Loci in the Pleurotus eryngii

  • Ryu, Jae San;Kim, Min-Keun;Park, Bokyung;Ali, Asjad;Joung, Wan-Kyu
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 추계학술대회 및 정기총회
    • /
    • pp.35-35
    • /
    • 2015
  • Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency.

  • PDF

Altered Calcium Current of the Vascular Smooth Muscle in Renal Hypertension

  • Nam, Sang-Chae;Jeong, Hye-Jeon;Kim, Won-Jae;Lee, Jong-Un
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.351-356
    • /
    • 1999
  • The present study was aimed at investigating whether the calcium current in the vascular smooth muscle (VSM) cells is altered in renal hypertension. Two-kidney, one clip (2K1C) and deoxycorticosterone acetate (DOCA)-salt hypertension were made in Sprague-Dawley rats. Rats without clipping the renal artery or implanting DOCA were used as control for 2K1C and DOCA-salt hypertension, respectively. Four weeks after clipping, systolic blood pressure was significantly higher in 2K1C rats than in control $(192{\pm}24\;and\;119{\pm}4$ mmHg, respectively, n=16 each). DOCA-salt rats also showed a higher blood pressure $(180{\pm}15$ mmHg, n=18) compared with control $(121{\pm}6$ mmHg, n=14). VSM cells were enzymatically and mechanically isolated from basilar arteries. Single relaxed VSM cells measured $5{\sim}10\;{\mu}m$ in width and $70{\sim}150\;{\mu}m$ in length were obtained. VSM cells could not be differentiated in size and shape between hypertensive and normotensive rats under light microscopy. High-threshold (L-type) calcium currents were recorded using whole-cell patch clamp technique. The amplitude of the current recorded from VSM cells was larger in 2K1C hypertension than in control. Neither the voltage-dependence of the calcium current nor the cell capacitance was significantly affected by 2K1C hypertension. By contrast, the amplitude of the calcium current was not altered in DOCA-salt hypertension. These results suggest that high-threshold calcium current of the VSM cells is altered in 2K1C hypertension, and that calcium channel may not be involved in calcium recruitment of VSM in DOCA-salt hypertension.

  • PDF

Opening of ATP-sensitive $K^+$ Channel by Pinacidil Requires Serine/Threonine Phosphorylation in Rat Ventricular Myocytes

  • Kwak, Yong-Geun;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.293-303
    • /
    • 1999
  • The influences of specific protein phosphatase and protein kinase inhibitors on the ATP-sensitive $K^+\;(K_{ATP})$ channel-opening effect of pinacidil were investigated in single rat ventricular myocytes using patch clamp technique. In cell-attached patches, pinacidil $(100\;{\mu}M)$ induced the opening of the $K_{ATP}$ channel, which was blocked by the pretreatment with H-7 $(100\;{\mu}M)$ whereas enhanced by the pretreatment with genistein $(30\;{\mu}M)$ or tyrphostin A23 $(10\;{\mu}M)$. In inside-out patches, pinacidil $(10\;{\mu}M)$ activated the $K_{ATP}$ channels in the presence of ATP (0.3 mM) or AMP-PNP (0.3 mM) and in a partial rundown state. The effect of pinacidil $(10\;{\mu}M)$ was not affected by the pretreatment with protein tyrosine phosphatase 1B $(PTP1B,\;10\;{\mu}g\;ml^{-1}),$ but blocked by the pretreatment of protein phosphatase 2A $(PP2A,\;1\;U\;ml^{-1})$. In addition, pinacidil $(10\;{\mu}M)$ could not induce the opening of the reactivated $K_{ATP}$ channels in the presence of H-7 $(100\;{\mu}M)$ but enhanced it in the presence of ATP (1 mM) and genistein $(30\;{\mu}M).$ These results indicate that the $K_{ATP}$ channel-opening effect of pinacidil is not mediated via phosphorylation of $K_{ATP}$ channel protein or associated protein, although it still requires the phosphorylation of serine/threonine residues as a prerequisite condition.

  • PDF

Direct Corticosteroid Modulation of GABAergic Neurons in the Anterior Hypothalamic Area of GAD65-eGFP Mice

  • Shin, Seung-Yub;Han, Tae-Hee;Lee, So-Yeong;Han, Seong-Kyu;Park, Jin-Bong;Erdelyi, Ferenc;Szabo, Gabor;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권3호
    • /
    • pp.163-169
    • /
    • 2011
  • Corticosterone is known to modulate GABAergic synaptic transmission in the hypothalamic paraventricular nucleus. However, the underlying receptor mechanisms are largely unknown. In the anterior hypothalamic area (AHA), the sympathoinhibitory center that project GABAergic neurons onto the PVN, we examined the expression of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) of GABAergic neurons using intact GAD65-eGFP transgenic mice, and the effects of corticosterone on the burst firing using adrenalectomized transgenic mice. GR or MR immunoreactivity was detected from the subpopulations of GABAergic neurons in the AHA. The AHA GABAergic neurons expressed mRNA of GR (42%), MR (38%) or both (8%). In addition, in brain slices incubated with corticosterone together with RU486 (MR-dominant group), the proportion of neurons showing a burst firing pattern was significantly higher than those in the slices incubated with vehicle, corticosterone, or corticosterone with spironolactone (GR-dominant group; 64 vs. 11~14%, p<0.01 by $x^2$-test). Taken together, the results show that the corticosteroid receptors are expressed on the GABAergic neurons in the AHA, and can mediate the corticosteroid-induced plasticity in the firing pattern of these neurons. This study newly provides the experimental evidence for the direct glucocorticoid modulation of GABAergic neurons in the AHA in the vicinity of the PVN.

Effects of Lubiprostone on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Colon

  • Jiao, Han-Yi;Kim, Dong Hyun;Ki, Jung Suk;Ryu, Kwon Ho;Choi, Seok;Jun, Jae Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권4호
    • /
    • pp.341-346
    • /
    • 2014
  • Lubiprostone is a chloride ($Cl^-$) channel activator derived from prostaglandin $E_1$ and used for managing constipation. In addition, lubiprostone affects the activity of gastrointestinal smooth muscles. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow-wave activity in smooth muscles. We studied the effects of lubiprostone on the pacemaker potentials of colonic ICCs. We used the whole-cell patch-clamp technique to determine the pacemaker activity in cultured colonic ICCs obtained from mice. Lubiprostone hyperpolarized the membrane and inhibited the generation of pacemaker potentials. Prostanoid $EP_1$, $EP_2$, $EP_3$, and $EP_4$ antagonists (SC-19220, PF-04418948, 6-methoxypyridine-2-boronc acid N-phenyldiethanolamine ester, and GW627368, respectively) did not block the response to lubiprostone. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) did not block the response to lubiprostone. In addition, tetraethylammonium (TEA, a voltage-dependent potassium [$K^+$] channel blocker) and apamin (a calcium [$Ca^{2+}$]-dependent $K^+$ channel blocker) did not block the response to lubiprostone. However, glibenclamide (an ATP-sensitive $K^+$ channel blocker) blocked the response to lubiprostone. Similar to lubiprostone, pinacidil (an opener of ATP-sensitive $K^+$ channel) hyperpolarized the membrane and inhibited the generation of pacemaker potentials, and these effects were inhibited by glibenclamide. These results suggest that lubiprostone can modulate the pacemaker potentials of colonic ICCs via activation of ATP-sensitive $K^+$ channel through a prostanoid EP receptor-independent mechanism.

식이 지방이 췌장 90%를 제거한 당뇨 흰쥐의 인슐린 분비능과 췌장 베타세포의 양에 미치는 영향 (The Effect of Dietary Fat on Insulin Secretion and Pancreatic β-Cell Mass in 90% Pancreatectomized Diabetic Rats)

  • 박선민;박춘희;홍상미
    • 한국식품영양과학회지
    • /
    • 제36권2호
    • /
    • pp.186-193
    • /
    • 2007
  • The prevalence of diabetes has increased to 8% of population. Unlike type 2 diabetes in the western countries, Korean diabetic patients are nonobese and have low serum insulin levels. As the increased prevalence of diabetes and the peculiar characteristics may be related to dietary fat contents, we determined their effects on insulin resistance, insulin secretion and pancreatic $\beta-cell$ mass in 90% pancreatectomized (Px) diabetic rats in the present study. The rats were provided with low fat diet (LF, 10 energy% fat), moderate fat diet (MF, 25 energy% fat) and high fat diet (HF, 40 energy% fat) for 6 months. HF increased body weight and epidydimal fat pads parallel with increased food intake compared to LF and MF. Fasting serum glucose and insulin levels and homeostasis model assessment of insulin resistance were higher in HF, compared to LF and MF, indicating that HF increased insulin resistance. Rats fed LF and MF diets reduced insulin resistance, but only rats fed MF improved pancreatic $\beta-cell$ mass and insulin secretion capacity, measured by hyperglycemic clamp and in situ pancreatic perfusion. LF had low insulin secretion capacity and pancreatic $\beta-cell$ mass, indicating the increased possibility of diabetic prevalence and progression. MF increased $\beta-cell$ mass by stimulating $\beta-cell$ proliferation and neogenesis and reducing $\beta-cell$ apoptosis. In conclusion, MF is effective for the prevention of prevalence and progression of diabetes.

Presenilin Modulates Calcium-permeant, Magnesium-Nucleotide regulated channel, I(MgNUM)

  • Shin, Sun-Young;Jeong, Soon-Youn;Uhm, Dae-Yong;Sungkwon Chung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.47-47
    • /
    • 2003
  • The presenilin 1 (PS1) or PS2 is an essential component of the ${\gamma}$-secretase complex, which mediates the intramembrane proteolysis of selected type-I membrane, including the ${\beta}$-amyloid precursor protein (APP) to yield A${\beta}$. Familial Alzheimer's disease (FAD)-associated mutations in presenilins give rise to an increased production of a highly amyloidogenic A${\beta}$42. In addition to their well-documented proteolytic function, the presenilins play a role in calcium signaling. We have previously reported that presenilin FAD mutations cause highly consistent alterations in intracellular calcium signaling pathways, which include deficits in capacitative calcium entry (CCE), the refilling mechanism for depleted internal calcium stores. However, molecular basis for the presenilin-mediated modulation of CCE remains to be elucidated. In the present study, whole-cell patch clamp method was used to identify a specific calcium-permeable ion channel current(s) that is responsible for the CCE deficits associated with FAD-linked PS1 mutants. Unexpectedly, both voltage-activated and conventional store depletion-activated calcium currents I(CRAC), were absent in HEK293 cells, which were stably transfected either with wild-type or FAD mutant (L286V, M146L, and delta E9) forms of PS1. Recently, magnesium-nucleotide-regulated metal cation current, or I(MagNum), has been described and appears to share many common properties with I(CRAC) including calcium permeability and inhibitor sensitivity (e.g. 2-APB). We have detected I(MagNum) in all 293 cells tested. Interestingly, FAD mutant 293 cells developed only about half of currents compared to PS1 wild type cells.

  • PDF

TEVC Studies of potent Antagonists of Human $P2X_3$ Receptor

  • Moon, Hyun-Duk;Lee, Jung-Sun;Park, Chul-Seung;Kim, Yong-Chul
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.55-55
    • /
    • 2003
  • P2X$_3$ receptor, a member of P2 purine receptors, is a ligand-gated ion channel activated by extracellular ATP as an endogenous ligand, and highly localized in peripheral and central sensory neurons. The activation of P2X3 receptor by ATP as the pronociceptive effect has been known to initiate the pain signaling involved in chronic inflammatory nociception and neuropathic pain by nerve injury, implicating the possibility of new drug development to control pains. In this study, we have developed a two electrode voltage clamp (TEVC) assay system to evaluate the inhibitory activity of several newly synthesized PPADS and a novel non-ionic antagonist against ATP activation of human P2X3 receptor. PPADS derivatives include several pyridoxine and pyridoxic acid analogs to study the effects of phosphate and aldehyde functional groups in PPADS. All new PPADS analogs were less potent than PPADS at human P2X$_3$ receptors, however, LDD130, a non-ionic analog showed potent antagonistic property with $IC_{50}$/ of 8.34 pM. In order to uncover the structure activity relationships of LDD130, and design new structural analogs, we synthesized and investigated a few structural variants of LDD130, and the results will be discussed in this presentation.

  • PDF

Lithspermic acid-A slows down the inactivation kinetics of cardiac $Na^+$ current by intracellular $Ca^{2+}$-dependent mechanisms

  • Yoon, Jin-Young;Hyuncheol Oh;Ho, Won-Kyung;Lee, Suk-Ho
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.46-46
    • /
    • 2003
  • Salviae Miltiorrhizae Radix has been used for treatment of cardiovascular diseases in oriental medicine. To investigate the possible involvement of cardiac ion channel in this effect, we examined electrophysiological effects of the extract of Salviae Miltiorrhizae Radix on action potentials and ionic currents in rat ventricular myocytes. The extracts of Salviae Miltiorrhizae Radix were fractionated into nine fractions, and the effect of each fraction on action potential was tested. The fraction containing monomethyl lithospermic acid-A (LSA-A) induced a significant prolongation of action potential duration (APD). LSA-B which is a major component of Salviae Miltiorrhizae Radix, however, did not cause a significant effect. In voltage clamp experiments, the effects of LSA-A on K currents, Ca currents and Na currents were tested. Neither K currents nor L-type Ca currents were affected by LSA-A. On the contrary, LSA-A significantly slowed down the inactivation kinetics of the Na current with no effect on the fast component of the inactivation process. The amplitude of the peak current and the voltage-dependence of activation were not changed by LSA-A. The effect of LSA-A on Na current was abolished when high concentration of $Ca^{2+}$ buffer (10 mM BAPTA) was included in the pipette solution or when Ca2+ current was blocked by nicardipine (1 $\mu$M) in the bath solution.n.

  • PDF