Lithspermic acid-A slows down the inactivation kinetics of cardiac $Na^+$ current by intracellular $Ca^{2+}$-dependent mechanisms

  • Yoon, Jin-Young (Department f Physiology, Seoul National University College of Medicine) ;
  • Hyuncheol Oh (Medicinal Resources Research Center of Wonkwang University) ;
  • Ho, Won-Kyung (Department f Physiology, Seoul National University College of Medicine) ;
  • Lee, Suk-Ho (Department f Physiology, Seoul National University College of Medicine)
  • Published : 2003.06.01

Abstract

Salviae Miltiorrhizae Radix has been used for treatment of cardiovascular diseases in oriental medicine. To investigate the possible involvement of cardiac ion channel in this effect, we examined electrophysiological effects of the extract of Salviae Miltiorrhizae Radix on action potentials and ionic currents in rat ventricular myocytes. The extracts of Salviae Miltiorrhizae Radix were fractionated into nine fractions, and the effect of each fraction on action potential was tested. The fraction containing monomethyl lithospermic acid-A (LSA-A) induced a significant prolongation of action potential duration (APD). LSA-B which is a major component of Salviae Miltiorrhizae Radix, however, did not cause a significant effect. In voltage clamp experiments, the effects of LSA-A on K currents, Ca currents and Na currents were tested. Neither K currents nor L-type Ca currents were affected by LSA-A. On the contrary, LSA-A significantly slowed down the inactivation kinetics of the Na current with no effect on the fast component of the inactivation process. The amplitude of the peak current and the voltage-dependence of activation were not changed by LSA-A. The effect of LSA-A on Na current was abolished when high concentration of $Ca^{2+}$ buffer (10 mM BAPTA) was included in the pipette solution or when Ca2+ current was blocked by nicardipine (1 $\mu$M) in the bath solution.n.

Keywords