• Title/Summary/Keyword: civil structures

Search Result 8,824, Processing Time 0.031 seconds

Experimental Study on the Performance Improvement of Velcro Reinforcement through Internal Filling (내부충진을 통한 벨크로 보강재의 성능향상에 대한 실험적 연구)

  • Jeong, Yeong-Seok;Kwon, Minho;Kim, Jin-Sup;Nam, Gwang-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.347-355
    • /
    • 2021
  • During the earthquake, for multi-story structure, if the first floor is soft, the deformation will concentrate on that floor causing a serious damage to the column members which might leads to the collapse of the whole structure like Piloti structure during the Pohang earthquake in Korea. According to the 2016 National Disaster Management Research Institute's "Investigation of Seismic Reinforcement and Cost Analysis of Domestic Non-seismic Buildings", the rate of seismic resistance of private reinforced concrete buildings was 38.3 %. Among them, it was reported that the seismic-resistance ratio of the two to five-story structures was less than 50 %. Accordingly, the government is trying to improve the seismic rate through support projects, but the conventional seismic reinforcement methods are still expensive, and emergency construction is difficult. Therefore, in this study, the field applicability was evaluated by improving the reinforcement method using Velcro, which was developed through the research project of the Ministry of Land, Transport and Maritime Affairs in 2014. In order to improve the performance of the Velcro reinforcement method, introducing the initial tension of Velcro using high foaming rigid urethane filling between the Velcro and concrete of the columns was applied. Additionally, an experiment was conducted to evaluate the ductility of Velcro specimen from the concrete confinement effect. As a result, the ductility of the Velcro specimen was improved compare to Normal specimen. However, the energy dissipation capacity of VELCRO2 is better than VELCRO1, yet the maximum ductility of those two specimens did not show a significant difference. Therefore, the improvement of the internal filler material is still needed to have a better maximum ductility.

A Study on the Effect of Applying Water Seepage Lowering Method Using Swelling Waterstop for Expansion Joint in the Concrete Dam (콘크리트 댐에서 수축이음부의 수팽창성 차수재를 이용한 침투저감 공법 적용효과 연구)

  • Han, Kiseung;Lee, Seungho;Kim, Sanghoon;Kim, Sejin;Pai, Sungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.21-29
    • /
    • 2021
  • Most concrete gravity-type dams in and out of the country were constructed by column method to control cracks caused by concrete hydration heat generated during construction, resulting in a certain level of leakage after impoundment through various causes, such as contraction joints and construction joints. However, due to the characteristics of concrete structures that shrink and expand according to temperature, concrete dams have vertical joints and drains to allow penetration. PVC waterproof shows excellent effects in completion of the dam, which however increases the possibility of interfacial failure due to different thermal expansion. Other causes of penetration may include problems with quality control during installation, generation of cracks due to heat of hydration of concrete, waterproofing methods, etc. In the case of Bohyunsan Dam in Yeongcheon, North Gyeongsang Province, the amount of drainage in the gallery was checked and underwater, and it was confirmed that there are many penetrations from drainage holes connected to vertical joints, and that some of the PVC waterproofs are not fully operated. As a new method to prevent penetration through vertical joints, D.S.I.M. (Dam Sealing Innovation Method) developed by World E&C was applied to Bohyunsan Dam and checked the amount of drainage in the gallery. As a result of first testing three most leaking vertical joints, the drain in the gallery was reduced by 87% on the average and then applied to the remaining 13 locations, which showed a 83% reduction effect based on the total drain in the gallery. Summing up these results, it was found that D.S.I.M. preventing water leakage from the upstream face is a valid construction method to reduce the water see-through and penetration quantity seen in downstream faces of concrete dams. If D.S.I.M. is applied to other concrete dams at domestic and abroad, it is expected that it will be very effective to prevent water leakage through vertical joints that are visible from downstream faces.

A Study on Decision of Cut Rock Slope Angle Applied Shear Strength of Continuum Rock Mass Induced from Hoek-Brown Failure Criterion (Hoek-Brown 파괴기준에서 유도된 연속체암반의 전단강도를 적용한 깎기 암반사면 경사 결정 연구)

  • Kim, Hyungmin;Lee, Byokkyu;Woo, Jaegyung;Hur, Ik;Lee, Junki;Lee, Sugon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.13-21
    • /
    • 2019
  • There are many cuts or natural rock slopes that remain stable for a long time in the natural environment with steep slopes ($65^{\circ}$ to $85^{\circ}$). In terms of design practice, the rock mass consisting of similar rock condition and geological structures is defined as a good continuum rock slope, and during the process of decision making angle of this rock slope, it will be important to establish the geotechnical properties estimating method of the continuum rock on the process of stability analysis in the early stages of design and construction. In this study, the stability analysis of a good continuum rock slope that can be designed as a steep slope proposed a practical method of estimating the shear strength by induced from the Hoek-Brown failure criterion, and in addition, the design applicability was evaluated through the stability analysis of steep rock slope. The existing method of estimating the shear strength was inadequate for practical use in the design, as the equivalent M-C shear strength corresponding to the H-B envelope changes sensitively, even with small variations in confining stress. To compensate for this problem, it was proposed to estimate equivalent M-C shear strength by iso-angle division method. To verify the design applicability of the iso-angle division method, the results of the safety factor and the displacement according to the change in angle of the cut slope constructed at the existing working design site were reviewed. The safety factor is FS=16~59 on the 1:0.5 slope, FS=12~52 on the 1:0.3 slope, most of which show a 10~12 percent reduction. Displacement is 0.126 to 0.975 mm on the 1:0.5 slope, 0.152 to 1.158 mm on the 1:0.3 slope, and represents an increase of 10 to 15%. This is a slightly change in normal proportion and is in good condition in terms of stability. In terms practical the working design, it was confirmed that applying the shear strength estimated by Iso-angle division method derived from the H-B failure criterion as a universal shear strength for a good continuum rock mass slope was also able to produce stable and economic results. The procedure for stability analysis using LEM (Limit Equilibrium Analysis Method) and FEM (Finite Element Analysis Method) will also be practical in the rock slope where is not distributed fault. The study was conducted by selecting the slope of study area as a good rock condition, establishing a verification for which it can be applied universal to a various rock conditions will be a research subject later on.

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.

Flow Characteristics and Riverbed Change Simulation on Bridge-intensive Section (교량밀집 구간의 흐름특성과 하상변동 모의)

  • Cho, Hong Je;Jeon, Woo Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.589-598
    • /
    • 2010
  • When the hydraulic structures, such as bridge and weir, are consecutively installed to a short section of a river with complicated cross section, analyzing the flow characteristics and the riverbed change modality of the river is very important. In the 250 m section of the Taehwa river near the Samho-bridge, which passes through Ulsan city, three bridges has been installed, and the tributary water is flowing into both up and downstream of the section. Due to these factors, when the flood occurs, the cross section of the river changes vastly by the water level change and scour. Even so, due to the fact that the Samho-bridge divides the section into two parts, the national river and the regional river, each part is being analyzed separately by the onedimensional model. In this study, the flow characteristics due to the bridge concentration and the tributary water inflow were jointly analyzed for both up and downstream by using the one-dimensional HEC-RAS model and the two-dimensional SMS model, such as RMA2. The riverbed change modality of the section was also investigated by using the SED2D model. The results showed that the water level difference between the HEC-RAS and RMA2 was 0.87 m when applied to the three consecutive bridges. The riverbed change simulation using SED2D showed that the maximum scour was 0.231 m and it occurred at the Samho-bridge, which located in the middle and has short pier distance. In conclusion, when planning the river maintenance for the regions with concentrated bridges or the sections with severe changes in cross-section and flow, estimating the flood elevation by two-dimensional model and establishing countermeasures for the scouring of the bridge are required. In addition, an integrated analysis on both the national river and the regional river is necessary.

A Study on the Effect of Metals on Bacteria Adhesion to Zeolite as Bio-media Materials (제올라이트를 이용한 생물막 형성시 미생물의 부착에 금속이 미치는 영향에 관한 연구)

  • Kim, Jae Keun;Park, In Sun;Park, Jae-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.303-310
    • /
    • 2009
  • Natural zeolite is widely used as sorbents and bio-media materials because it is cheap as well as it has efficient porous structures and large cation exchange. In this study, the effect of metal cations $(Na^+,\;Ca^{2+},\;Mg^{2+},\;Al^{3+})$ adsorbed to natural zeolite on the microorganism attachment was investigated. Metal-modified zeolites (MMZ) were prepared with 0.01 M, 0.02 M and 0.1 M NaCl, $CaCl_2$, $MgCl_2$ and $AlCl_3$ solutions respectively, which concentrations were equivalent to 10%, 20% and 100% of cation exchange capacity (CEC) of natural zeolite. Pseudomonas putida was used as microorganism which was cultivated in Beef Extract Medium at $26^{\circ}C$. The microorganism attachment to MMZ was increased more than natural zeolite. The amount of bacterial adhesion to MMZ and natural zeolite were $Mg^{2+}>natural>Na^+>Al^{3+}>Ca^{2+}$ under 10% of CEC, $Mg^{2+}>Ca^{2+}>Al^{3+}>natural>Na^+$ under 20% of CEC and $Ca^{2+}>Mg^{2+}>natural>Al^{3+}>Na^+$ under 100% of CEC. Especially, Mg-modified zeolite (Mg-MZ) showed the highest amount of bacterial adhesion, which increased the microorganism attachment 60% higher than natural zeolite under 10% of CEC. However, the amount of bacterial adhesion was decreased as the concentration of metal cations modified to zeolite were increased, showing that the increased amounts were 60% under 10% of CEC, 50% under 20% of CEC and 10% under 100% of CEC in Mg-MZ. Additionally, the effect of $Mg^{2+}$ in solution on the bacterial adhesion was investigated in order to compare it with the effect of $Mg^{2+}$ adsorbed to zeolite. The maximum quantity of bacterial adhesion to Mg-MZ was not different from the amount of microorganism attachment to the natural zeolite when $Mg^{2+}$ solution was added.

Estimation of Residual Useful Life and Tracking of Real-time Damage Paths of Rubble-Mound Breakwaters Using Stochastic Wiener Process (추계학적 위너 확률과정을 이용한 경사제의 실시간 피해경로 추적과 잔류수명 추정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.147-160
    • /
    • 2020
  • A stochastic probabilistic model for harbor structures such as rubble-mound breakwater has been formulated by using the generalized Wiener process considering the nonlinearity of damage drift and its nonlinear uncertainty, by which the damage path with real-time can be tracked, the residual useful lifetime at some age can also be analyzed properly. The formulated stochastic model can easily calculate the probability of failure with the passage of time through the probability density function of cumulative damage. In particular, the probability density functions of residual useful lifetime of the existing harbor structures can be derived, which can take into account the current age, its present damage state and the future damage process to be occurred. By using the maximum likelihood method and the least square method together, the involved parameters in the stochastic model can be estimated. In the calibration of the stochastic model presented in this paper, the present results are very well similar with the results of MCS about tracking of the damage paths as well as evaluating of the density functions of the cumulative damage and the residual useful lifetime. MTTF and MRL are also evaluated exactly. Meanwhile, the stochastic probabilistic model has been applied to the rubble-mound breakwater. The related parameters can be estimated by using the experimental data of the cumulative damages of armor units measured as a function of time. The theoretical results about the probability density function of cumulative damage and the probability of failure are very well agreed with MCS results such that the density functions of the cumulative damage tend to move to rightward and the amounts of its uncertainty are increased as the elapsed time goes on. Thus, the probabilities of failure with the elapsed time are also increased sharply. Finally, the behaviors of residual useful lifetime have been investigated with the elapsed age. It is concluded for rubble-mound breakwaters that the probability density functions of residual useful lifetime tends to have a longer tail in the right side rather than the left side because of the gradual increases of cumulative damage of armor units. Therefore, its MRLs are sharply decreased after some age. In this paper, the special attentions are paid to the relationship of MTTF and MRL and the elapsed age of the existing structure. In spite of that the sum of the elapsed age and MRL must be equal to MTTF deterministically, the large difference has been shown as the elapsed age is increased which is due to the uncertainty of cumulative damage to be occurred in the future.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

A Study on Seismic Liquefaction Risk Map of Electric Power Utility Tunnel in South-East Korea (국내 동남권 지역의 전력구 지반에 대한 지진시 액상화 위험도 작성 연구)

  • Choi, Jae-soon;Park, Inn-Joon;Hwang, Kyengmin;Jang, Jungbum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.13-19
    • /
    • 2018
  • Following the 2016 Gyeongju earthquake, the Pohang Earthquake occurred in 2017, and the south-east region in Korea is under the threat of an earthquake. Especially, in the Pohang Earthquake, the liquefaction phenomenon occurred in the sedimentation area of the coast, and preparation of countermeasures is very important. The soil liquefaction can affect the underground facilities directly as well as various structures on the ground. Therefore, it is necessary to identify the liquefaction risk of facilities and the structures against the possible earthquakes and to prepare countermeasures to minimize them. In this study, we investigated the seismic liquefaction risk about the electric power utility tunnels in the southeast area where the earthquake occurred in Korea recently. In the analysis of seismic liquefaction risk, the earthquake with return period 1000 years and liquefaction potential index are used. The liquefaction risk analysis was conducted in two stages. In the first stage, the liquefaction risk was analyzed by calculating the liquefaction potential index using the ground survey data of the location of electric power utility tunnels in the southeast region. At that time, the seismic amplification in soil layer was considered by soil amplification factor according to the soil classification. In the second stage, the liquefaction risk analysis based on the site response analyses inputted 3 earthquake records were performed for the locations determined to be dangerous from the first step analysis, and the final liquefaction potential index was recalculated. In the analysis, the site investigation data were used from the National Geotechnical Information DB Center. Finally, it can be found that the proposed two stage assessments for liquefaction risk that the macro assessment of liquefaction risk for the underground facilities including the electric power utility tunnel in Korea is carried out at the first stage, and the second risk assessment is performed again with site response analysis for the dangerous regions of the first stage assessment is reasonable and effective.

A Study on Legal and Regulatory Improvement Direction of Aeronautical Obstacle Management System for Aviation Safety (항공안전을 위한 장애물 제한표면 관리시스템의 법·제도적 개선방향에 관한 소고)

  • Park, Dam-Yong
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.31 no.2
    • /
    • pp.145-176
    • /
    • 2016
  • Aviation safety can be secured through regulations and policies of various areas and thorough execution of them on the field. Recently, for aviation safety management Korea is making efforts to prevent aviation accidents by taking various measures: such as selecting and promoting major strategic goals for each sector; establishing National Aviation Safety Program, including the Second Basic Plan for Aviation Policy; and improving aviation related legislations. Obstacle limitation surface is to be established and publicly notified to ensure safe take-off and landing as well as aviation safety during the circling of aircraft around airports. This study intends to review current aviation obstacle management system which was designed to make sure that buildings and structures do not exceed the height of obstacle limitation surface and identify its operating problems based on my field experience. Also, in this study, I would like to propose ways to improve the system in legal and regulatory aspects. Nowadays, due to the request of residents in the vicinity of airports, discussions and studies on aviational review are being actively carried out. Also, related ordinance and specific procedures will be established soon. However, in addition to this, I would like to propose the ways to improve shortcomings of current system caused by the lack of regulations and legislations for obstacle management. In order to execute obstacle limitation surface regulation, there has to be limits on constructing new buildings, causing real restriction for the residents living in the vicinity of airports on exercising their property rights. In this sense, it is regarded as a sensitive issue since a number of related civil complaints are filed and swift but accurate decision making is required. According to Aviation Act, currently airport operators are handling this task under the cooperation with local governments. Thus, administrative activities of local governments that have the authority to give permits for installation of buildings and structures are critically important. The law requires to carry out precise surveying of vast area and to report the outcome to the government every five years. However, there can be many problems, such as changes in the number of obstacles due to the error in the survey, or failure to apply for consultation with local governments on the exercise of construction permission. However, there is neither standards for allowable errors, preventive measures, nor penalty for the violation of appropriate procedures. As such, only follow-up measures can be taken. Nevertheless, once construction of a building is completed violating the obstacle limitation surface, practically it is difficult to take any measures, including the elimination of the building, because the owner of the building would have been following legal process for the construction by getting permit from the government. In order to address this problem, I believe penalty provision for the violation of Aviation Act needs to be added. Also, it is required to apply the same standards of allowable error stipulated in Building Act to precise surveying in the aviation field. Hence, I would like to propose the ways to improve current system in an effective manner.