• Title/Summary/Keyword: civil structures

Search Result 8,769, Processing Time 0.026 seconds

Mesoscopic study on historic masonry

  • Sejnoha, J.;Sejnoha, M.;Zeman, J.;Sykora, J.;Vorel, J.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.99-117
    • /
    • 2008
  • This paper presents a comprehensive approach to the evaluation of macroscopic material parameters for natural stone and quarry masonry. To that end, a reliable non-linear material model on a meso-scale is developed to cover the random arrangement of stone blocks and quasi-brittle behaviour of both basic components, as well as the impaired cohesion and tensile strength on the interface between the blocks and mortar joints. The paper thus interrelates the following three problems: (i) definition of a suitable periodic unit cell (PUC) representing a particular masonry structure; (ii) derivation of material parameters of individual constituents either experimentally or running a mixed numerical-experimental problem; (iii) assessment of the macroscopic material parameters including the tensile and compressive strengths and fracture energy.

Numerical study for downburst wind and its load on high-rise building

  • Huang, Guoqing;Liu, Weizhan;Zhou, Qiang;Yan, Zhitao;Zuo, Delong
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.89-100
    • /
    • 2018
  • 3D simulations based on an impinging jet were carried out to investigate the flow field of a steady downburst and its effects on a high-rise building by applying the SST k-${\omega}$ turbulence model. The vertical profile of radial wind speed obtained from the simulation was compared with experimental data and empirical models in order to validate the accuracy of the present numerical method. Then wind profiles and the influence of jet velocity and jet height were investigated. Focusing on a high-rise building, the flow structures around the building, pressure distributions on the building surfaces and aerodynamic forces were analyzed in order to enhance the understanding of wind load characteristics on a high-rise building immersed in a downburst.

Collapse fragility analysis of the soil nail walls with shotcrete concrete layers

  • Bayat, Mahmoud;Emadi, Amin;Kosariyeh, Amir Homayoun;Kia, Mehdi;Bayat, Mahdi
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.279-283
    • /
    • 2022
  • The seismic analytic collapse fragility of soil nail wall structures with a shotcrete concrete covering is investigated in this paper. The finite element modeling process has been well described. The fragility function evaluates the link between ground motion intensities and the likelihood of reaching a specific level of damage. The soil nail wall has been subjected to incremental dynamic analysis (IDA) from medium to strong ground vibrations. The nonlinear dynamic analysis of the soil nail wall uses a set of 20 earthquake ground motions with varying PGAs. PGD is utilized as an intensity measure, the numerical findings demonstrate that the soil nailing wall reaction is particularly sensitive to earthquake intensity measure (IM).

EFFECT OF CONCRETE STRENGTH ON FLEXURAL DEFLECTION OF HIGH-STRENGTH REINFORCED CONCRETE BEAMS

  • Inju Lee;Taewan Kim;Sung-Nam Hong;Jie Cui;Sun-Kyu Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1313-1317
    • /
    • 2009
  • Deflections of Reinforced concrete structures must satisfy the permissible values and it is hard to predict the due to uncertainty of deflection of the reinforced concrete structures. Thus, many researchers have suggested a number of experimental equation of deflection against the uncertainty. In a specification, a procedure to evaluate flexure deflection using effective moment of inertia and moment-curvature relation is suggested. ACI offers a method using effective moment of inertia, which has been developed by Branson. Eurocode 2(EC2) suggests a procedure to evaluate deflection of reinforced concrete structure using moment-curvature relation. In this paper, a series of experiments were conducted on the singly reinforced concrete beams which have the same reinforcement ratio and different concrete strength. Therefore, the effect of the concrete strength on the deflection of the beams was analysed. The deflections obtained from the experiment were compared with the deflections calculated with ACI code and EC2.

  • PDF

Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics

  • Aydogdu, Ibrahim;Carbas, Serdar;Akin, Alper
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.93-112
    • /
    • 2017
  • Metaheuristic algorithms in general make use of uniform random numbers in their search for optimum designs. Levy Flight (LF) is a random walk consisting of a series of consecutive random steps. The use of LF instead of uniform random numbers improves the performance of metaheuristic algorithms. In this study, three discrete optimum design algorithms are developed for steel skeletal structures each of which is based on one of the recent metaheuristic algorithms. These are biogeography-based optimization (BBO), brain storm optimization (BSO), and artificial bee colony optimization (ABC) algorithms. The optimum design problem of steel skeletal structures is formulated considering LRFD-AISC code provisions and W-sections for frames members and pipe sections for truss members are selected from available section lists. The minimum weight of steel structures is taken as the objective function. The number of steel skeletal structures is designed by using the algorithms developed and effect of LF is investigated. It is noticed that use of LF results in up to 14% lighter optimum structures.

Response of non-structural components mounted on irregular RC buildings: comparison between FE and EC8 predictions

  • Aldeka, Ayad B.;Chan, Andrew H.C.;Dirar, Samir
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.351-373
    • /
    • 2014
  • This paper investigates the seismic response of lightweight acceleration-sensitive non-structural components (NSCs) mounted on irregular reinforced concrete (RC) primary structures (P-structures) using non-linear dynamic finite element (FE) analysis. The aim of this paper is to study the influence of NSC to P-structure vibration period ratio, peak ground acceleration, NSC to P-structure height ratio, and P-structure torsional behaviour on the seismic response of the NSCs. Representative constitutive models were used to simulate the behaviour of the RC P-structures. The NSCs were modelled as vertical cantilevers fixed at their bases with masses on the free ends and varying lengths so as to match the frequencies of the P-structures. Full dynamic interaction is considered between the NSCs and P-structures. A set of 21 natural and artificial earthquake records were used to evaluate the seismic response of the NSCs. The numerical results indicate that the behaviour of the NSCs is significantly influenced by the investigated parameters. Comparison between the FE results and Eurocode (EC8) predictions suggests that EC8 underestimates the response of NSCs mounted on the flexible sides of irregular RC P-structures when the fundamental periods and heights of the NSCs match those of the P-structures. The perceived cause of this discrepancy is that EC8 does not take into account the amplification in the dynamic response of NSCs induced by the torsional behaviour of RC P-structures.

Computational multiscale analysis in civil engineering

  • Mang, H.A.;Aigner, E.;Eberhardsteiner, J.;Hackspiel, C.;Hellmich, C.;Hofstetter, K.;Lackner, R.;Pichler, B.;Scheiner, S.;Sturzenbecher, R.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.109-128
    • /
    • 2009
  • Multiscale analysis is a stepwise procedure to obtain macro-scale material laws, directly amenable to structural analysis, based on information from finer scales. An essential ingredient of this mode of analysis is mathematical homogenization of heterogeneous materials at these scales. The purpose of this paper is to demonstrate the potential of multiscale analysis in civil engineering. The materials considered in this work are wood, shotcrete, and asphalt.

Vertical seismic response analysis of straight girder bridges considering effects of support structures

  • Wang, Tong;Li, Hongjing;Ge, Yaojun
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1481-1497
    • /
    • 2015
  • Vertical earthquake ground motion may magnify vertical dynamic responses of structures, and thus cause serious damage to bridges. As main support structures, piers and bearings play an important role in vertical seismic response analysis of girder bridges. In this study, the pier and bearing are simplified as a vertical series spring system without mass. Then, based on the assumption of small displacement, the equation of motion governing the simply-supported straight girder bridge under vertical ground motion is established including effects of vertical deformation of support structures. Considering boundary conditions, the differential quadrature method (DQM) is applied to discretize the above equation of motion into a MDOF (multi-degree-of-freedom) system. Then seismic responses of this MDOF system are calculated by a step-by-step integration method. Effects of support structures on vertical dynamic responses of girder bridges are studied under different vertical strong earthquake motions. Results indicate that support structures may remarkably increase or decrease vertical seismic responses of girder bridges. So it is of great importance to consider effects of support structures in structural seismic design of girder bridges in near-fault region. Finally, optimization of support structures to resist vertical strong earthquake motions is discussed.