• Title/Summary/Keyword: civil structure

Search Result 5,592, Processing Time 0.031 seconds

Improved formulation for a structure-dependent integration method

  • Chang, Shuenn-Yih;Wu, Tsui-Huang;Tran, Ngoc-Cuong
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.149-162
    • /
    • 2016
  • Structure-dependent integration methods seem promising for structural dynamics applications since they can integrate unconditional stability and explicit formulation together, which can enable the integration methods to save many computational efforts when compared to an implicit method. A newly developed structure-dependent integration method can inherit such numerical properties. However, an unusual overshooting behavior might be experienced as it is used to compute a forced vibration response. The root cause of this inaccuracy is thoroughly explored herein. In addition, a scheme is proposed to modify this family method to overcome this unusual overshooting behavior. In fact, two improved formulations are proposed by adjusting the difference equations. As a result, it is verified that the two improved formulations of the integration methods can effectively overcome the difficulty arising from the inaccurate integration of the steady-state response of a high frequency mode.

The application of BEM in the Membrane structures interaction with simplified wind

  • Xu, Wen;Ye, Jihong;Shan, Jian
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.349-365
    • /
    • 2009
  • Membrane structures are quite sensitive to wind and therefore the fluid-solid interaction can not be neglected in dynamic analysis. A boundary element method (BEM) for 3D simulation of wind-structure interaction in tensile membrane structures is presented in this paper. The flow is treated as incompressible and potential. The flow field is solved with boundary element method codes and structural simulation is performed by finite element method software ANSYS. The nonlinear equations system is solved iteratively, with segregated treatment of the fluid and structure equations. Furthermore this method has been demonstrated to be effective by typical examples. Besides, the influence of several parameters on the wind-structure interaction, such as rise-span ratio, prestress and the wind velocity are investigated according to this method. The results provide experience in wind resistant researches and engineering.

Damage assessment for buried structures against internal blast load

  • Ma, G.W.;Huang, X.;Li, J.C.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.301-320
    • /
    • 2009
  • Damage assessment for buried structures against an internal blast is conducted by considering the soil-structure interaction. The structural element under analysis is assumed to be rigid-plastic and simply-supported at both ends. Shear failure, bending failure and combined failure modes are included based on five possible transverse velocity profiles. The maximum deflections with respect to shear and bending failure are derived respectively by employing proper failure criteria of the structural element. Pressure-Impulse diagrams to assess damage of the buried structures are subsequently developed. Comparisons have been done to evaluate the influences of the soil-structure interaction and the shear-to-bending strength ratio of the structural element. A case study for a buried reinforced concrete structure has been conducted to show the applicability of the proposed damage assessment method.

A family of dissipative structure-dependent integration methods

  • Chang, Shuenn-Yih;Wu, Tsui-Huang;Tran, Ngoc-Cuong
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.815-837
    • /
    • 2015
  • A new family of structure-dependent integration methods is developed to enhance with desired numerical damping. This family method preserves the most important advantage of the structure-dependent integration method, which can integrate unconditional stability and explicit formulation together, and thus it is very computationally efficient. In addition, its numerical damping can be continuously controlled with a parameter. Consequently, it is best suited to solving an inertia-type problem, where the unimportant high frequency responses can be suppressed or even eliminated by the favorable numerical damping while the low frequency modes can be very accurately integrated.

Optimum of Damper Position for Steel Frame Structure on Seismic Design (내진설계 강골조 구조물의 감쇠기 위치 최적화)

  • Park, Soon-Eung;Park, Moon-Ho;Kim, Jin-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.4
    • /
    • pp.187-192
    • /
    • 2009
  • This study is performing a seismic analysis on the steel frames structure with dampers and analyzing the dynamic behavior in order to examine their efficiency and study the optimum dampers position to the seismic design steel structure. To improve the ability against an earthquake, this study performed the time history analysis. Controling an earthquake is the way to minimize the damage of the steel structure by dissipating input energy generated by an earthquake.

  • PDF

Collapse behaviour in reciprocal frame structures

  • Garavaglia, Elsa;Pizzigoni, Attilio;Sgambi, Luca;Basso, Noemi
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.533-547
    • /
    • 2013
  • "Reciprocal Frame" refers to a self-supporting grid structure used both for floor and roof. Using Finite Element Methods for non-linear solid mechanics and frictional-contact, this paper intends to analytically and numerically investigate the collapse behaviour of a reciprocal frame structure made of fibre-reinforced concrete. Considering a simple 3-beam structure, it has been investigated using a solid finite element model. Once defined the collapse behaviour of the simple structure, the analysis has been generalized using a concentrated plasticity finite element method. Results provided will be useful for studying generic reciprocal frame structures with several beams.

Design of corrugated sheets exposed to fire

  • Sokol, Zdenek;Wald, Frantisek;Kallerova, Petra
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.231-242
    • /
    • 2008
  • This paper presents results of fire tests on corrugated sheets used as load bearing structure of roofs of industrial buildings. Additional tests of bolted sheet connections to the supporting structure at ambient and elevated temperatures are described. Three connection types were tested and their resistance, stiffness and deformation capacity was evaluated. Finite element simulations of the corrugated sheet based on the experimental observations are briefly described and design models are presented.

Assessment of seismic damage on frame structures across the earth fissure under earthquake

  • Xiong, Zhongming;Huo, Xiaopeng;Chen, Xuan;Xu, Jianjian;Xiong, Weiyang;Zhuge, Yan
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.423-435
    • /
    • 2020
  • An accurate evaluation of structural damage is essential to performance-based seismic design for the structure across the earth fissure. By comparing the calculation results from three commonly used damage models and the experimental results, a weighted combination method using Chen model was selected in this paper as the seismic damage evaluation. A numerical model considering the soil-structure interaction (SSI) was proposed using ABAQUS software. The model was calibrated by comparing with the experimental results. The results from the analysis indicated that, for the structure across the earth fissure, the existence of earth fissure changed the damage distribution of the structural members. The damage of structural members in the hanging wall was greater than that in the foot wall. Besides, the earth fissure enlarged the damage degree of the structural members at the same location and changed the position of the weak story. Moreover, the damage degree of the structure across the earth fissure was greater than that of the structure without the earth fissure under the same excitation. It is expected that the results from this research would enhance the understanding of the performance-based seismic design for the structure across the earth fissure.

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin;Gu, Ming
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.35-58
    • /
    • 2014
  • A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.