Acknowledgement
Supported by : National Science Council
References
- Alamatian, J. (2013), "New implicit higher order time integration for dynamic analysis", Struct. Eng. Mech., 48(5), 711-736. https://doi.org/10.12989/sem.2013.48.5.711
- Belytschko, T. and Hughes, T.J.R. (1983), Computational Methods for Transient Analysis, Elsevier Science Publishers B.V., North-Holland.
- Chang, S.Y., Tsai, K.C. and Chen, K.C. (1998), "Improved time integration for pseudodynamic tests", Earthq. Eng. Struct. Dyn., 27, 711-730. https://doi.org/10.1002/(SICI)1096-9845(199807)27:7<711::AID-EQE753>3.0.CO;2-6
- Chang, S.Y. (2001a), "Application of the momentum equations of motion to pseudodynamic testing", Phil. Tran. Royal Soc., Series A, 359(1786), 1801-1827. https://doi.org/10.1098/rsta.2001.0874
- Chang, S.Y. (2001b), "Analytical study of the superiority of the momentum equations of motion for impulsive loads", Comput. Struct., 79(15), 1377-1394. https://doi.org/10.1016/S0045-7949(01)00044-X
- Chang, S.Y. (2002a), "Explicit pseudodynamic algorithm with unconditional stability", J. Eng. Mech., ASCE, 128(9), 935-947. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935)
- Chang, S.Y. (2002b), "Integrated equations of motion for direct integration methods", Struct. Eng. Mech., 13(5), 569-589. https://doi.org/10.12989/sem.2002.13.5.569
- Chang, S.Y. (2007), "Improved explicit method for structural dynamics", J. Eng. Mech., ASCE, 133(7), 748760.
- Chang, S.Y. (2009), "An explicit method with improved stability property", Int. J. Numer. Meth. Eng., 77(8), 1100-1120. https://doi.org/10.1002/nme.2452
- Chang, S.Y. (2010), "A new family of explicit method for linear structural dynamics", Comput. Struct., 88(11-12), 755-772. https://doi.org/10.1016/j.compstruc.2010.03.002
- Chang, S.Y. (2014), "A family of non-iterative integration methods with desired numerical dissipation", Int. J. Numer. Meth. Eng., 100(1), 62-86. https://doi.org/10.1002/nme.4720
- Chang, S.Y. (2015), "Dissipative, non-iterative integration algorithms with unconditional stability for mildly nonlinear structural dynamics", Nonlin. Dyn., 79(2), 1625-1649. https://doi.org/10.1007/s11071-014-1765-7
- Chen, C. and Robinson, A. (1993), "Improved time-history analysis for structural dynamics. I: treatment of rapid variation of excitation and material nonlinearity", J. Eng. Mech., ASCE, 119(12), 2496-2513. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:12(2496)
- Chung, J. and Hulbert, G.M. (1993), "A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-a method", J. Appl. Mech., 60(6), 371-375. https://doi.org/10.1115/1.2900803
- Gao, Q., Wu, F., Zhang, H.W., Zhong, W.X., Howson W.P. and Williams, F.W. (2012), "A fast precise integration method for structural dynamics problems", Struct. Eng. Mech., 43(1), 1-13. https://doi.org/10.12989/sem.2012.43.1.001
- Goudreau, G.L. and Taylor, R.L. (1972), "Evaluation of numerical integration methods in elasto- dynamics", Comput. Meth. Appl. Mech. Eng., 2, 69-97.
- Gui, Y., Wang, J.T., Jin, F., Chen, C. and Zhou, M.X. (2014), "Development of a family of explicit algorithms for structural dynamics with unconditional stability", Nonlin. Dyn., 77, 1157-1170. https://doi.org/10.1007/s11071-014-1368-3
- Hadianfard, M.A. (2012), "Using integrated displacement method to time-history analysis of steel frames with nonlinear flexible connections", Struct. Eng. Mech., 41(5), 675-689. https://doi.org/10.12989/sem.2012.41.5.675
- Hilber, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dyn., 5, 283-292. https://doi.org/10.1002/eqe.4290050306
- Hilber, H.M. and Hughes, T.J.R. (1978), "Collocation, dissipation, and 'overshoot' for time integration schemes in structural dynamics", Earthq. Eng. Struct. Dyn., 6, 99-118. https://doi.org/10.1002/eqe.4290060111
- Kolay, C. and Ricles, J.M. (2014), "Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation", Earthq. Eng. Struct. Dyn., 43, 1361-1380. https://doi.org/10.1002/eqe.2401
- Krenk, S. (2008), "Extended state-space time integration with high-frequency energy dissipation", Int. J. Numer. Meth. Eng., 73, 1767-1787. https://doi.org/10.1002/nme.2144
- Lambert, J.D. (1973), Computational Methods in Ordinary Differential Equations, John Wiley, London.
- Loh, C.H., Lee, Z.K., Wu, T.C. and Peng, S.Y. (2000), "Ground motion characteristics of the Chi-Chi earthquake of 21 September 1999", Earthq. Eng. Struct. Dyn., 29, 867-897. https://doi.org/10.1002/(SICI)1096-9845(200006)29:6<867::AID-EQE943>3.0.CO;2-E
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., ASCE, 85, 67-94.
- Robinson, A. and Chen, C. (1993), "Improved time-history analysis for structural dynamics. II: reduction of effective number of degrees of freedom", J. Eng. Mech., ASCE, 119(12), 2514-2530. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:12(2514)
- Rezaiee-Pajand, M., Sarafrazi, S.R. and Hashemian, M. (2011), "Improving stability domains of the implicit higher order accuracy method", Int. J. Numer. Meth. Eng., 88, 880-896. https://doi.org/10.1002/nme.3204
- Rezaiee-Pajand, M. and Sarafrazi, S.R. (2010), "A mixed and multi-step higher-order implicit time integration family", J. Mech. Eng. Sci., 224, 2097-2108. https://doi.org/10.1243/09544062JMES2093
- Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1981), "An alpha modification of Newmark's method", Int. J. Numer. Meth. Eng., 15, 1562-1566.
- Zhou, X. and Tamma, K.K. (2006), "Algorithms by design with illustrations to solid and structural mechanics/dynamics", Int. J. Numer. Meth. Eng., 66, 1738-1790. https://doi.org/10.1002/nme.1559
Cited by
- Improved formulation for a structure-dependent integration method vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.149
- Assessments of dissipative structure-dependent integration methods vol.62, pp.2, 2015, https://doi.org/10.12989/sem.2017.62.2.151
- Extended implicit integration process by utilizing nonlinear dynamics in finite element vol.64, pp.4, 2015, https://doi.org/10.12989/sem.2017.64.4.495
- Highly accurate family of time integration method vol.67, pp.6, 2015, https://doi.org/10.12989/sem.2018.67.6.603
- An effective locally-defined time marching procedure for structural dynamics vol.73, pp.1, 2015, https://doi.org/10.12989/sem.2020.73.1.065
- A dissipative family of eigen-based integration methods for nonlinear dynamic analysis vol.75, pp.5, 2015, https://doi.org/10.12989/sem.2020.75.5.541