The 9th International Conference on Construction Engineering and Project Management
/
pp.11-17
/
2022
Design-bid-build (DBB) is the most common project delivery method among highway projects. State Highway Agencies (SHAs) usually apply a low-bid approach to select contractors for their DBB projects. In this approach, the Federal Highway Agency suggests SHAs heighten contractors' competition to lower bid prices. However, these attempts may become ineffective due to collusive bidding arrangements among certain contractors. One common strategy is the rotation of winning bidders of a group of contractors who bid on many of the same projects. These arrangements may also be specific to a particular region or vary in time. Despite the practices' adverse effects on bidding outcomes, an effective model to detect red-flag bidding patterns is lacking. This study fills the gap by proposing a novel framework that utilizes pattern mining techniques and statistical tests for unusual pattern detection. A case study with historical data from an SHA is conducted to illustrate the proposed framework.
Kim, Ji-Myong;Park, Young Jun;Kim, Young-Jae;Yu, YeongJin
국제학술발표논문집
/
The 6th International Conference on Construction Engineering and Project Management
/
pp.192-194
/
2015
The growing size and complex process in construction project recently leads to increase risk and the losses as well. Even though researchers have identified the major risk indicators, there is lack of comprehensive and quantitative research for identifying the relationship between the risk indicators and economic losses associated with construction projects. To address this shortage of research, this study defines risk indicators and create a framework to assess the influence of economic losses from the indicators. An insurance company's claim payout record was accepted as the dependent variable to reflect the real economic losses. Based on the claims, we categorized the causes and results of accidents. To establish framework, built environment vulnerability indicators and geographical vulnerability indicators were employed as the risk indicators. A Pearson correlation analysis was adopted to validate the relationship with loss ratio and risk indicators. Consequently, this framework and its results may offer significant references for under writers of insurance companies and loss prevention activities.
The 5th International Conference on Construction Engineering and Project Management
/
pp.433-436
/
2013
This study suggests IFC-based bridge information modeling methods and its application model in BIM environment. Data model extension for bridge structure was achieved using user-defined property sets based on IFC framework. First, identification information was added. Bridge members are identified through physical and spatial semantic information added as property sets. Instances for semantic information were assigned according to standardized rules. Second, CO2 related factors were added for application information model. It can play a role to calculate and manage the quantity of CO2 emission. Third, properties for temporary structure to estimate and manage the construction cost were added. Finally, we investigated proposed methods through implementing the application information model of bridges.
다양한 시설의 건설, 다수 이해관계자의 참여, 긴 사업기간 등의 복잡성으로 인해 대규모 건설프로젝트는 이를 관리함에 있어 어려움이 있다. 효과적인 대규모 프로젝트관리를 위해서는 합리적인 진도율 측정이 중요하고, 이를 위한 다양한 방법들이 제안되었다. 하지만 기존의 방법들은 단일 또는 일부 시설의 건설 프로젝트로 한정하였기 때문에 다양한 시설들을 건설하는 대규모 프로젝트에 적용하는 데 한계가 있다. 따라서 본 연구는 대규모 건설프로젝트의 특성을 반영한 진도율 측정 프레임워크를 제안함을 목표로 한다. 프레임워크는 작업분류체계 개발, 주요시설별과 하위시설별 가중치 산정, 통합 진도율 산정으로 총 4가지 단계로 이루어져 있다. 본 프레임워크를 검증하기 위해서 세종시를 대상으로 사례연구를 수행하였고, 활용 가능성을 검증할 수 있었다. 본 연구를 바탕으로 대규모 건설프로젝트의 진도율을 보다 합리적으로 측정할 수 있고 효과적인 프로젝트관리가 이루어질 것으로 기대된다.
The 3th International Conference on Construction Engineering and Project Management
/
pp.153-160
/
2009
The demand for super tall building construction is increasing worldwide. There has been a constant request for achieving early payback on investment by shortening the construction time. This pertains especially for the case of huge investment projects such as super tall building construction. It is very important to shorten the construction time for the building framework, which requires substantial construction time and cost, and this is directly related to the establishment of an optimum lift plan for construction. When there is a problem in the selection of the lift equipment, it is almost impossible to revise the selection, resulting in a possible failure of the project. Thus, the purpose of this study is to analyze the function and logic for the development of the process for the selection of lift equipment for super tall building projects and further development of making the analyzed process into a system. In line with this research objective, the process of selecting the optimum lift equipment by domestic construction company was investigated and analyzed as well as collecting the actual field data. The actual data were obtained by sensors installed on tower cranes at three construction sites with the help from the construction company.
The 9th International Conference on Construction Engineering and Project Management
/
pp.744-751
/
2022
Construction is among the most dangerous industries with numerous accidents occurring at job sites. Following an accident, an investigation report is issued, containing all of the specifics. Analyzing the text information in construction accident reports can help enhance our understanding of historical data and be utilized for accident prevention. However, the conventional method requires a significant amount of time and effort to read and identify crucial information. The previous studies primarily focused on analyzing related objects and causes of accidents rather than the construction activities. This study aims to extract construction activities taken by workers associated with accidents by presenting an automated framework that adopts a deep learning-based approach and natural language processing (NLP) techniques to automatically classify sentences obtained from previous construction accident reports into predefined categories, namely TRADE (i.e., a construction activity before an accident), EVENT (i.e., an accident), and CONSEQUENCE (i.e., the outcome of an accident). The classification model was developed using Convolutional Neural Network (CNN) showed a robust accuracy of 88.7%, indicating that the proposed model is capable of investigating the occurrence of accidents with minimal manual involvement and sophisticated engineering. Also, this study is expected to support safety assessments and build risk management systems.
The 9th International Conference on Construction Engineering and Project Management
/
pp.736-743
/
2022
Construction workers experience a high rate of fatal incidents from mobile equipment in the industry. One of the major causes is the decline in the acoustic condition of workers due to the constant exposure to construction noise. Previous studies have proposed various ways in which audio sensing and machine learning techniques can be used to track equipment's movement on the construction site but not on the audibility of safety signals. This study develops a novel framework to help automate safety surveillance in the construction site. This is done by detecting the audio sound at a different signal-to-noise ratio of -10db, -5db, 0db, 5db, and 10db to notify the worker of imminent dangers of mobile equipment. The scope of this study is focused on developing a signal processing model to help improve the audible sense of mobile equipment for workers. This study includes three-phase: (a) collect audio data of construction equipment, (b) develop a novel audio-based machine learning model for automated detection of collision hazards to be integrated into intelligent hearing protection devices, and (c) conduct field experiments to investigate the system' efficiency and latency. The outcomes showed that the proposed model detects equipment correctly and can timely notify the workers of hazardous situations.
The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
/
pp.52-61
/
2017
Considering its significant impact on the cost and schedule of construction projects, formwork as one part of temporary facility categories in construction should be arranged precisely. Current practice in the formwork planning is often conducted manually and repetitively, causing low efficiency and time waste. This study proposes an automated framework to generate more accurate and detailed formwork plans by utilizing information from building information modeling (BIM) considering the adequate geometric and semantic information provided by the BIM model. The dimensions and quantities information of elements in a building can be extracted automatically. Then, a rule is prepared for calculating the required forms erected around elements based on the contact areas. Finally, an algorithm of integrating first fit decreasing (FFD) with coordinated bottom left (CBL) is applied to automatically generate the formwork plan. The BIM-based automated planning framework is demonstrated by an illustrative example. The results show that the proposed framework can generate the formwork plan accurately and automatically, and significantly improve the efficiency in the formwork plan and reuse.
The 8th International Conference on Construction Engineering and Project Management
/
pp.237-242
/
2020
Construction noise is among the most critical stressors that adversely affect the quality of life of the people residing near construction sites. Many countries strictly regulate construction noise based on sound pressure levels, as well as timeslots and type of construction equipment. However, individuals react differently to noise, and their tolerance to noise levels varies, which should be considered when regulating construction noise. Although studies have attempted to analyze individuals' stress responses to construction noise, the lack of quantitative methods to measure stress has limited our understanding of individuals' stress responses to noise. Therefore, the authors proposed a quantitative stress measurement framework with a wearable electroencephalogram (EEG) sensor to decipher human brain wave patterns caused by diverse construction stressors (e.g., worksite hazards). This present study extends this framework to investigate the feasibility of using the wearable EEG sensor to measure individuals' emotional stress responses to construction noise in a laboratory setting. EEG data were collected from three subjects exposed to different construction noises (e.g., tonal vs. impulsive noises, different sound pressure levels) recorded at real construction sites. Simultaneously, the subjects' perceived stress levels against these noises were measured. The results indicate that the wearable EEG sensor can help understand diverse individuals' stress responses to nearby construction noises. This research provides a more quantitative means for measuring the impact of the noise generated at a construction site on neighboring communities, which can help frame more reasonable construction noise regulations that consider various types of residents in urban areas.
The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
/
pp.653-658
/
2011
Construction works of civil infrastructure projects generate a considerable amount of carbon emissions by utilizing a set of energy-intensive equipment and causing traffic congestion. However, the voluntary efforts of the contractor to mitigate these emissions are at an early stage. To address this issue, this paper explores the opportunities to take carbon emissions that would be caused from construction works into consideration in contracting methods and procedures. The opportunities for reducing carbon emissions from construction activities themselves are examined under the framework of Performance Contracting for Construction (PCfC), and carbon emissions from traffic congestion are attempted to be incorporated into the Road User Cost (RUC) calculation. This paper also identifies and discusses major challenges that must be confronted when considering the mitigation of these emissions in contracting methods and procedures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.