• 제목/요약/키워드: civil

검색결과 37,373건 처리시간 0.046초

National Revolution vs. Civil Revolution: The Comparison between Thailand and Myanmar (민족혁명과 시민혁명: 타이와 미얀마)

  • Park, Eunhong
    • The Southeast Asian review
    • /
    • 제24권2호
    • /
    • pp.127-165
    • /
    • 2014
  • This article regards the phase of political confrontations in Thailand and Burma as a prolonged and inconclusive political struggle between national revolution forces and civil revolution forces. It argues that in Thai case, anti-monarchy constitutional revolution has led to a right-wing national revolution based on state nationalism consolidating capitalist economic system by Sarit's military coup, while in Burmese case, anti-British imperialism movement in colonial era has resulted in a left-wing national revolution grounded on state nationalism associating with socialist economic system by Ne Win's military coup. It is also interesting to note that the two cases experienced state nationalism denying autonomous civil society as a process of nation-building in spite of their contrasting ideologies. In both cases, it became inevitable to have national revolution forces clinging to official nationalism and state nationalism confronting with civil revolution forces seeking popular nationalism and liberal nationalism. In particular, unlike Burmese society, Thai society, without colonial history has never experienced a civil war mobilizing anti-colonial popular nationalism including ethnic revolt. This article considers Dankwart Rustow's argument that national unity as a background condition must precede all the other phases of democratization, but that otherwise its timing is irrelevant. In this context, Thai democratization without national unity which began earlier than Burmese is taking a backward step. For the time being, there would be no solution map to overcome severe political polarization between the right-wing national revolution forces defending official nationalism cum state nationalism and the civil revolution forces trying to go beyond official nationalism towards popular nationalism cum liberal nationalism. In contrast, paradoxically belated Burmese democratization has just taken a big leap in escaping from serious and inconclusive nature of political struggle between the left-wing national revolution forces to defend official nationalism cum state nationalism and civil revolution based on popular nationalism cum liberal nationalism towards a reconciliation phase in order to seek solutions for internal conflicts. The two case studies imply that national unity is not a background condition, but a consequence of the process of political polarization and reconciliation between national revolution forces and civil revolution forces.

System for Supporting the Decision about the Possibility of Concluding the Civil Law Agreements for Medical, Therapeutic and Dental Services

  • Hnatchuk, Yelyzaveta;Hovorushchenko, Tetiana;Shteinbrekher, Daria;Kysil, Tetiana
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.155-164
    • /
    • 2022
  • The review of known decisions showed that currently there are no systems and technologies for supporting the decision about the possibility of concluding the civil law agreements for medical, therapeutic and dental services. The paper models the decision-making support process on the possibility of concluding the civil law agreements for medical, therapeutic and dental services, which is the theoretical basis for the development of rules, methods and system for supporting the decision about the possibility of concluding the civil law agreements for medical, therapeutic and dental services. The paper also developed the system for supporting the decision about the possibility of concluding the civil law agreements for medical, therapeutic and dental services, which automatically and free determines the possibility or impossibility of concluding the corresponding civil law agreement for the provision of a corresponding medical service. In the case of formation of a conclusion about the possibility of concluding the agreement, further conclusion and signing of the corresponding agreement takes place. In the case of forming a conclusion about the impossibility of concluding the agreement, a request is made for finalizing the relevant agreement for the provision of the relevant medical service, indicating the reasons for the impossibility of concluding the agreement - missing essential conditions in the agreement. After finalization, the agreement can be analyzed again by the developed system for supporting the decision.

On wave dispersion properties of functionally graded plates resting on elastic foundations using quasi-3D and 2D HSDT

  • Bennai, Riadh;Mellal, Fatma;Nebab, Mokhtar;Fourn, Hocine;Benadouda, Mourad;Atmane, Hassen Ait;Tounsi, Abdelouahed;Hussain, Muzamal
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.447-460
    • /
    • 2022
  • In this article, wave propagation in functional gradation plates (FG) resting on an elastic foundation with two parameters is studied using a new quasi-three-dimensional (3D) higher shear deformation theory (HSDT). The new qausi-3D HSOT has only five variables in fields displacement, which means has few numbers of unknowns compared with others quasi-3D. This higher shear deformation theory (HSDT) includes shear deformation and effect stretching with satisfying the boundary conditions of zero traction on the surfaces of the FG plate without the need for shear correction factors. The FG plates are considered to rest on the Winkler layer, which is interconnected with a Pasternak shear layer. The properties of the material graded for the plates are supposed to vary smoothly, with the power and the exponential law, in the z-direction. By based on Hamilton's principle, we derive the governing equations of FG plates resting on an elastic foundation, which are then solved analytically to obtain the dispersion relations. Numerical results are presented in the form of graphs and tables to demonstrate the effectiveness of the current quasi-3D theory and to analyze the effect of the elastic foundation on wave propagation in FG plates.

A novel hyperbolic integral-Quasi-3D theory for flexural response of laminated composite plates

  • Ahmed Frih;Fouad Bourada;Abdelhakim Kaci;Mohammed Bouremana;Abdelouahed Tounsi;Mohammed A. Al-Osta;Khaled Mohamed Khedher;Mohamed Abdelaziz Salem
    • Geomechanics and Engineering
    • /
    • 제34권3호
    • /
    • pp.233-250
    • /
    • 2023
  • This paper investigates the flexural analysis of isotropic, transversely isotropic, and laminated composite plates using a new higher-order normal and shear deformation theory. In the present theory, only five unknown functions are involved compared to six or more unknowns used in the other similar theories. The developed theory does not need a shear correction factor. It can satisfy the zero traction boundary conditions on the top and the bottom surfaces of the plate as well as account for sufficient distribution of the transverse shear strains. The thickness stretching effect is considered in the computation. A simply supported was considered on all edges of the plate. The plate is subjected to uniform and sinusoidal distributed load in the static analysis. Laminated composite, isotropic, and transversely isotropic plates are considered. The governing equations are obtained utilizing the virtual work principle. The differential equations are solved via Navier's procedure. The results obtained from the developed theory are compared with other higher-order theories considered in the previous studies and 3D elasticity solutions. The results showed that the proposed theory accurately and effectively predicts the bidirectional bending responses of laminated composite plates. Several parametric studies are presented to illustrate the various parameters influencing the static response of the laminated composite plates.

Evaluation on Cooling Performance of Ground Source Heat Pump System Equipped with Steel-pipe Civil Structures (강관 토목구조물이 설치된 지열 히트펌프 시스템의 냉방 성능 평가)

  • Seokjae Lee;Jeonghun Yang;Hangseok Choi
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • 제19권3호
    • /
    • pp.14-22
    • /
    • 2023
  • Steel-pipe civil structures, including steel-pipe energy piles and cast-in-place piles (CIPs), utilize steel pipes as their primary reinforcements. These steel pipes facilitate the circulation of a working fluid through their annular crosssection, enabling heat exchange with the surrounding ground formation. In this study, the cooling performance of a ground source heat pump (GSHP) system that incorporated steel-pipe civil structures was investigated to assess their applicability. First of all, the thermal performance test was conducted with steel-pipe CIPs to evaluate the average heat exchange amount. Subsequently, a GSHP system was designed and implemented within an office container, considering the various types of steel-pipe civil structures. During the performance evaluation tests, parameters such as the coefficient of performance (COP) and entering water temperature (EWT) were closely monitored. The outcomes indicated an average COP of 3.74 for the GSHP system and the EWT remained relatively stable throughout the tests. Consequently, the GSPH system demonstrated its capability to consistently provide a sufficient heat source, even during periods of high cooling thermal demand, by utilzing the steel-pipe civil structures.

Nondestructive detection of crack density in ultra-high performance concrete using multiple ultrasound measurements: Evidence of microstructural change

  • Seungo Baek;Bada Lee;Jeong Hoon Rhee;Yejin Kim;Hyoeun Kim;Seung Kwan Hong;Goangseup Zi;Gun Kim;Tae Sup Yun
    • Computers and Concrete
    • /
    • 제33권4호
    • /
    • pp.399-407
    • /
    • 2024
  • This study nondestructively examined the evolution of crack density in ultra-high performance concrete (UHPC) upon cyclic loading. Uniaxial compression was repeatedly applied to the cylindrical specimens at levels corresponding to 32% and 53% of the maximum load-bearing capacity, each at a steady strain rate. At each stage, both P-wave and S-wave velocities were measured in the absence of the applied load. In particular, the continuous monitoring of P-wave velocity from the first loading prior to the second loading allowed real-time observation of the strengthening effect during loading and the recovery effect afterwards. Increasing the number of cycles resulted in the reduction of both elastic wave velocities and Young's modulus, along with a slight rise in Poisson's ratio in both tested cases. The computed crack density showed a monotonically increasing trend with repeated loading, more significant at 53% than at 32% loading. Furthermore, the spatial distribution of the crack density along the height was achieved, validating the directional dependency of microcracking development. This study demonstrated the capability of the crack density to capture the evolution of microcracks in UHPC under cyclic loading condition, as an early-stage damage indicator.

A curved shell finite element for the geometrically non-linear analysis of box-girder beams curved in plan

  • Calik-Karakose, Ulku H.;Orakdogen, Engin;Saygun, Ahmet I.;Askes, Harm
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.221-238
    • /
    • 2014
  • A four-noded curved shell finite element for the geometrically non-linear analysis of beams curved in plan is introduced. The structure is conceived as a sequence of macro-elements (ME) having the form of transversal segments of identical topology where each slice is formed using a number of the curved shell elements which have 7 degrees of freedom (DOF) per node. A curved box-girder beam example is modelled using various meshes and linear analysis results are compared to the solutions of a well-known computer program SAP2000. Linear and non-linear analyses of the beam under increasing uniformly distributed loads are also carried out. In addition to box-girder beams, the proposed element can also be used in modelling open-section beams with curved or straight axes and circular plates under radial compression. Buckling loads of a circular plate example are obtained for coarse and successively refined meshes and results are compared with each other. The advantage of this element is that curved systems can be realistically modelled and satisfactory results can be obtained even by using coarse meshes.

Investigation of flexural behavior of a prestressed girder for bridges using nonproprietary UHPC

  • Pham, Hoa D.;Khuc, Tung;Nguyen, Tuan V.;Cu, Hung V.;Le, Danh B.;Trinh, Thanh P.
    • Advances in concrete construction
    • /
    • 제10권1호
    • /
    • pp.71-79
    • /
    • 2020
  • Ultra-high-performance concrete (UHPC) is recognized as a promising material in future civil engineering projects due to its outstanding mechanical and durability properties. However, the lack of local UHPC materials and official standards, especially for prestressed UHPC structures, has limited the application of UHPC. In this research, a large-scale prestressed bridge girder composed of nonproprietary UHPC is produced and investigated. This work has two objectives to develop the mixing procedure required to create UHPC in large batches and to study the flexural behavior of the prestressed girder. The results demonstrate that a sizeable batch of UHPC can be produced by using a conventional concrete mixing system at any precast factory. In addition, incorporating local aggregates and using conventional mixing systems enables regional widespread use. The flexural behavior of a girder made by this UHPC is investigated including flexural strength, cracking pattern and development, load-deflection curve, and strain and neutral axis behaviors through a comprehensive bending test. The experimental data is similar to the theoretical results from analytical methods based on several standards and recommendations of UHPC design.

Immobilization of oxidative enzymes onto Cu-activated zeolite to catalyze 4-chlorophenol decomposition

  • Zol, Muhamad Najmi Bin;Shuhaimi, Muhammad Firdaus Bin;Yu, Jimin;Lim, Yejee;Choe, Jae Wan;Bae, Sungjun;Kim, Han S.
    • Membrane and Water Treatment
    • /
    • 제11권3호
    • /
    • pp.195-200
    • /
    • 2020
  • In this study, a biocatalyst composite was prepared by immobilizing oxidoreductases onto Cu-activated zeolite to facilitate biochemical decomposition of 4-chlorophenol (4-CP). 4-CP monooxygenase (CphC-I) was cloned from a 4-CP degrading bacterium, Pseudarthrobacter chlorophenolicus A6, and then overexpressed and purified. Type X zeolite was synthesized from non-magnetic coal fly ash using acetic acid treatment, and its surfaces were coated with copper ions via impregnation (Cu-zeolite). Then, the recombinant oxidative and reductive enzymes were immobilized onto Cu-zeolite. The enzymes were effectively immobilized onto the Cu-zeolite (79% of immobilization yield). The retained catalytic activity of CphC-I after immobilization was 0.3423 U/g-Cu-zeolite, which was 63.3% of the value of free enzymes. The results of this study suggest that copper can be used as an effective enzyme immobilization binder because it provides favorable metalhistidine binding between the enzyme and Cu-zeolite.

CFD modelling of free-flight and auto-rotation of plate type debris

  • Kakimpa, B.;Hargreaves, D.M.;Owen, J.S.;Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.D.
    • Wind and Structures
    • /
    • 제13권2호
    • /
    • pp.169-189
    • /
    • 2010
  • This paper describes the use of coupled Computational Fluid Dynamics (CFD) and Rigid Body Dynamics (RBD) in modelling the aerodynamic behaviour of wind-borne plate type objects. Unsteady 2D and 3D Reynolds Averaged Navier-Stokes (RANS) CFD models are used to simulate the unsteady and non-uniform flow field surrounding static, forced rotating, auto-rotating and free-flying plates. The auto-rotation phenomenon itself is strongly influenced by vortex shedding, and the realisable k-epsilon turbulence modelling approach is used, with a second order implicit time advancement scheme and equal or higher order advection schemes for the flow variables. Sequentially coupling the CFD code with a RBD solver allows a more detailed modelling of the Fluid-Structure Interaction (FSI) behaviour of the plate and how this influences plate motion. The results are compared against wind tunnel experiments on auto-rotating plates and an existing 3D analytical model.