• Title/Summary/Keyword: citrate method

Search Result 188, Processing Time 0.03 seconds

Distribution of $^{123}I,\;^{99m}Tc-Human$ Polyclonal Nonspecific IgG and $^{67}Ga-Citrate$ in Abscess bearing Mice ($^{123}I,\;^{99m}Tc$ 사람 비특이 IgG 및 $^{67}Ga-Citrate$의 실험동물에서 염증병소 섭취율의 비교)

  • Lim, Sang-Moo;Woo, Kwang-Sun;Chung, Wee-Sup;Awh, Ok-Doo;Seo, Yong-Sup;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.1
    • /
    • pp.116-123
    • /
    • 1992
  • $^{123}I$ has ideal half life of 13 hours, suitable 159 keV gamma energy for imaging, and easy labeling methods. In Korea Cancer Center Hospital, $^{123}I$ has been produced by MC-50 cyclotron. The purpose of this study is looking for good labeling condition of $^{123}I$ and $^{99m}Tc$ to nonspecific human polyclonal IgG, and comparing these with $^{67}Ga-citrate$ in the abscess bearing mice. Human polyclonal nonspecific IgG was labeled with 0.2 M phosphate buffer added $^{123}I$ by chloramine T method. Human polyclonat nonspecific IgG was labeled with $^{99m}Tc-gluconate$ after activation with $\beta-mercaptoethanol$. In the abscess bearing mice, the radioactivity in the abscess was higher in 24 hours than 6 hours after injection. In the abscess, $^{123}I$ nonspecific IgG had higher uptake than $^{99m}Tc-IgG\;or\;^{67}Ga-citrate$. There was no significant difference in absecess uptake of $^{123}I-IgG$ among 24, 72, 120 hours abscess age. Further clinical researches with $^{123}I-nonspecific$ IgG, and other immunoscintigraphies using $^{123}I$ are expected.

  • PDF

Study on Clomiphene Citrate with Single Human Menopausal Gonadotropin for Controlled Ovarian Hyperstimulation (체외수정시술시 과배란에 Clomiphene Citrate와 일회 Human Menopausal Gonadotropin 병합요법의 효용성에 관한 연구)

  • Lee, So-Young;Lee, Sang-Hoon;Bae, Do-Whan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.22 no.2
    • /
    • pp.123-130
    • /
    • 1995
  • Many types of medication regimens have been used for controlled ovarian hyperstimulation for assisted reproductive technique(ART). Questions are now being raised regarding how to lower the escalating costs of assisted reproduction and decrease the extent of patient discomfort and disruption of life style without sacrificing success rates. In this investigation, from January 1994 through August 1994 patients presenting to the Chung-Ang university hospital, infertility clinic were offered the option of the clomiphene citrate (CC)/single Human Menopausal Gonadotropin(HMG) combination and conventional GnRH-agonist combination method. 60 patients (78 cycles) were given CC/single HMG combination as a study group, and 78 patients (102 cycles) were given conventional GnRH-a combined ultrashort protocol as a control group for IVF-ET program and the resulting number of oocyte retrieved, embryo produced, and pregnancy initiated were compared. There were no differences between the two groups in mean age, serum $E_2$, LH and FSH level on menstrual cycle day 2. HMG requirement was 2 ampules in study group and $24.2{\pm}6.8$ ampules in control group. On the day of HCG injection, serum LH and FSH levels were not significantly different, but serum $E_2$, was significantly higher in control group(p<0.001). There was relatively well endometrial quality in control group but not significant compare to study group. In control group, numbers of retrieved oocyte and transferred embryo were significantly more than study group(p<0.001). Fertilization rate was not significantly different in the two groups and pregnancy rates were 20.2% in study group 28.4% in control group(p<0.001). CC/single HMG protocol for IVF-ET is less expensive than GnRH-a combined ultrashort protocol and minimizes patients discomfort. In addition, CC/single HMG protocol produces acceptable pregnancy rate and represents an attractive alternative to select patients undergoing IVF-ET.

  • PDF

Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines

  • Nookala, Supraja;Tollamadugu, Naga Venkata Krishna Vara Prasad;Thimmavajjula, Giridhara Krishna;Ernest, David
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.97-109
    • /
    • 2015
  • Citrate ion is a commonly used reductant in metal colloid synthesis, undergoes strong surface interaction with silver nanocrystallites. The slow crystal growth observed as a result of the interaction between the silver surface and the citrate ion makes this reduction process unique compared to other chemical and radiolytic synthetic methods. The antimicrobial effects of silver (Ag) ion or salts are well known, but the effects of citrate coated Ag nanoparticles (CAgNPs) are scant. Herein, we have isolated biofilm causative bacteria and fungi from drinking water PVC pipe lines. Stable CAgNPs were prepared and the formation of CAgNPs was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance of CAgNPs at 430 nm. Fourier transform infrared spectroscopic analysis revealed C=O and O-H bending vibrations due to organic capping of silver responsible for the reduction and stabilization of the CAgNPs. X-ray diffraction micrograph indicated the face centered cubic structure of the formed CAgNPs, and morphological studies including size (average size 50 nm) were carried out using transmission electron microscopy. The hydrodynamic diameter (60.7 nm) and zeta potential (-27.6 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of CAgNPs was evaluated (in vitro) against the isolated fungi, Gram-negative and Gram-positive bacteria using disc diffusion method and results revealed that CAgNPs with 170ppm concentration are having significant antimicrobial effects against an array of microbes tested.

Effect of Various Biodegradable Chelating Agents on Growth of Plants under Lead stress (생분해되는 다양한 킬레이트들이 납에 노출된 식물의 성장에 미치는 영향)

  • Lee, Sang-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.61-65
    • /
    • 2010
  • Phytoextraction is a method of phytoremediation using plants to remediate metal-contaminated soils. Recently, various chelating agents were used in this method to increase the bioavailability of metals in soils. Even though phytoextraction is an economic and environment-friendly method, this cannot be applied in highly metal-contaminated areas because plants will not normally grow in such conditions. This research focuses on identifying chelating agents which are biodegradable and applicable to highly metal-contaminated areas. Lead (Pb) as a target metal and cysteine (Cys), histidine (His), citrate, malate, oxalate, succinate, and ethylenediamine (EDA) as biodegradable chelating agents were selected. Ethylenediamine tetraacetic acid (EDTA) was used as a comparative standard. Plants were grown on agar media containing various chelating agents with Pb to analyze the effect on root growth. Cys strongly increased the inhibitory effect of Pb on root growth of plants, while, His did not affect on it significantly. The inhibitory effect of oxalate is weak, and malate, citrate, and succinate did not show significant effects. Both EDTA and EDA diminished the inhibitory effect of Pb on root growth. The effect of EDA is correlated with decreased Pb uptake into the plants. In conclusion, as biodegradable chelating agents, EDA is a good candidate for highly Pb-contaminated area.

Preparation of Submicron YBaCuO Powder by Sol-gel Method

  • Fan, Zhanguo;Soh, Dea-Wha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.557-560
    • /
    • 2003
  • The submicron $YBa_2Cu_3O_x$ powder was prepared by the sol-gel method. The particle size is distributed from 0.2 to $1.0\;{\mu}m$, which benefits to eliminate the micro-cracks formed in the $YBa_2Cu_3O_x$ films deposited by electrophoresis. The powder was single phase of $YBa_2Cu_3O_x$ examined by X-ray diffraction. In the sol-gel process the citrate gel was formed from citric acid and nitrate solution of $Y_2O_3$, $Ba(NO_3)O_2$ and CuO. When pH values were adjusted to $6.4{\sim}6.7,\;Ba(NO_3)O_2$ could be dissolved in the citrate solution completely. Appropriate evaporative temperature of the sol-gel formation is discussed. After the heat treatment the transition temperature($T_c$) and critical current density($J_c$) of the $YBa_2Cu_3O_x$ samples made of the submicron powder were measured.

  • PDF

Adsorption of $N_2$ and Ar Gases on the Non-porous Perovskite Surfaces (무공성 Perovskite 표면에서의 $N_2$와 Ar 기체의 흡착)

  • Hyun-Woo Cho;Jung-Soo Kim;Kwang-Soon Lee;Woon-Sun Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.204-210
    • /
    • 1991
  • Multilayer adsorption isotherms of nitrogen and argon on the perovskite-type mixed oxides, synthesized by a citrate coprecipitation method, are determined at the liquid nitrogen temperature using a gravimetric adsorption apparatus. The volume of the adsorbed gas are plotted against the statistical thickness of the adsorbed layer, calculated from several universal adsorption isotherms one after another. The t-method area obtained from this plot is compared with the BET area and finally the appropriateness of universal adsorption isotherms is then discussed on the basis of the plot.

  • PDF

Combined Effect of Salts Mixture Addition and Brining in Hot Solution on the Korean Pickle Fermentation (오이지의 발효에 미치는 염혼합물 첨가 및 열수담금의 병용효과)

  • Choi, Hee-Sook;Ku, Kyung-Hyung;Kim, Jong-Goon;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.7
    • /
    • pp.865-870
    • /
    • 1990
  • Four different fermentation methods of Korean cucumber pickles were compared with conventional method, pickling in 10% NaCl solution at $25^{\circ}C$, in order to improve the storage stability. The methods studied were brining the cucumbers in hot($90^{\circ}C$) 10% NaCl solution(method A), addition of KCl and $CaCl_2$ into the hot salt solution(method B) addition of a sodium salts mixture of phosphates, nitrite and citrate into half fermented pickles prepared by method B(method C), substituted nitrite and citrate with KCl in method C(method D). It was found from results that the method C and D reduced the decreasing rate of pH very significantly by more than 3 fold and method B also showed the reducing effect. However, higher total acidity was measured for method C and D, which was opposite to pH results. Changes in hardness of cucumber showed little difference to control while color of brining solution exhibited some difference in their Hunter values. Organoleptic comparison showed a clear effect of salts mixtures by receiving the significant higher scores in fresh cucumber flavor and lower values in yeast moldy and sour flavor for method C and D when those were compared to control.

  • PDF

Optimization of Protoplast Preparation and Regeneration of a Medicinal Fungus Antrodia cinnamomea

  • Wu, Jyun-De;Chou, Jyh-Ching
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.483-493
    • /
    • 2019
  • Antrodia cinnamomea is a unique medicinal fungus in Taiwan. It has been found rich in some pharmacologically active compounds for anti-cancer, hangover, and immune regulation etc. With the in-depth study of these components, it would be interesting and important to establish a molecular system for basic studies of A. cinnamomea. Thus, we would like to set up a foundation for this purpose by studying the A. cinnamomea protoplast preparation and regeneration. Firstly, we studied the optimization method of protoplast preparation of A. cinnamomea, and found various factors that may affect the yield during protoplast preparation, such as mycelial ages, pH values, and osmotic stabilizers. Secondly, in the regeneration of protoplasts, we explored the effects of various conditions on the regeneration of protoplasts, including different media and osmotic pressure. In addition, we found that citrate buffer with pH value around 3 dramatically increased the regeneration of protoplasts of A. cinnamomea, and provided a set of regeneration methodology for A. cinnamomea.

Preparation and Characterization of Insoluble Anodes for Electrodeposition of Ni-W Alloys in Ammoniacal Citrate Bath (Ni-W 합금도금용 불용성 양극의 제조 및 특성 연구)

  • 장도연;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.6
    • /
    • pp.686-694
    • /
    • 1999
  • Insoluble anodes of the Ta/Ir mixed metal oxide for electrodeposition of Ni-W alloy in ammoniacal citrate bath were prepared by thermal decomposition method. Ti plate was etched in boiling oxalic acid solution and coated with ethanol solution of $TaCl_{5}$ and $IrCl_4$ mixed in a fixed ratio, followed by drying and treating at various temperatures. The coating layer of these insoluble anode was characterized by SEM, EDX, XRD and DSC. The decomposition rate of citric acid in plating bath was determined by measuring the $CO_2$ gas evolved at the anodes with Gas Chromatography. Evolution of $CO_2$ gas from Ta/Ir oxide anodes decreased about 5% compared with that of Pt. The $CO_2$ gas evolution was increased with the amount of Ir-oxide in the coatings. The coatings which have more than 40% ratio of Ta content and heat-treated at the temperature higher than $400^{\circ}C$ showed better efficiency

  • PDF

Fabrication and characterization of CaLa2ZnO5 based nanocrystalline materials

  • Hussain, Sk. Khaja;Raju, G. Seeta Rama;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.352.2-352.2
    • /
    • 2016
  • In recent times, much effort has been concentrated on trivalent rare-earth ions activated ceramics or oxide phosphors to develop display industries due to their promising applications in optoelectronic devices and field-emission displays. To prepare efficient phosphors, citrate sol-gel method is one of the best synthetic methods. Green and blue emissive CaLa2ZnO5:RE3+ nanocrystalline materials are synthesized by a citrate sol-gel method. After the samples annealing at $1100^{\circ}C$, morphological and structural properties are investigated by scanning electron microscope images and X-ray diffraction patterns, respectively. At low electron beam voltage of <5 kV, the visible photoluminescence properties are obtained. Various concentrations of the RE3+ ions exhibited their characteristic emission peaks at different excitation wavelengths, respectively. Similarly, at high electron beam anodic voltage, the cathodoluminescence properties are studied as a function of acceleration voltage and filament current. The chromaticity coordinates are calculated for the optimized CaLa2ZnO5 nanocrystalline luminescent materials.

  • PDF