• Title/Summary/Keyword: circumferential crack

Search Result 162, Processing Time 0.025 seconds

Fatigue Crack Initiation around a Hole under Out-of-phase Biaxial Loading (이상 이축 하중 하에서 구멍 주위에서의 피로 균열 발생)

  • Huh, Yong-Hak;Park, Pi-Lip;Kim, Dong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1695-1702
    • /
    • 2003
  • Fatigue crack initiation around a hole subjected to biaxial fatigue loads with a phase difference was investigated. Axial and torsional biaxial fatigue loads with different phase differences and biaxiality of 1/√3 were applied to thin-walled tubular specimens. Five phase differences of 0, 45, 90, 145 and 180 degrees were selected. Directions of the fatigue crack initiation around the hole were found to approach to the circumferential direction of the specimen with increment of the phase difference for fatigue tests with phase differences less than 90$^{\circ}$. Whereas directions for tests with phase differences greater than 90$^{\circ}$ got away from the circumferential direction and those were symmetric to the directions for tests with phase difference less than 90. . Furthermore, it was shown that the fatigue initiation life decreased with increment of phase difference for fatigue tests with phase differences less than 90$^{\circ}$, but it increased for tests with phase difference greater than 90$^{\circ}$. The crack initiation direction can be successfully explained by using the direction of the maximum tangential stress range obtained around the hole and at far-field.

Investigation on Effect of Distance Between Two Collinear Circumferential Surface Cracks on Primary Water Stress Corrosion Crack Growth in Alloy 600TT Steam Generator Tubes (Alloy 600TT 증기발생기 전열관내 일렬 원주방향 표면 일차수응력 부식균열 성장에 미치는 균열 간격의 영향 고찰)

  • Heo, Eun-Ju;Kim, Jong-Sung;Jeon, Jun-Young;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.269-273
    • /
    • 2015
  • The study investigated the effect of the distance between two collinear circumferential surface cracks on the primary stress corrosion crack (PWSCC) growth in alloy 600TT steam generator tubes using a finite element damage analysis based on the PWSCC initiation model and macroscopic phenomenological damage mechanics approach. The damage analysis method was verified by comparing the results to the previous study results. The verified method was applied to collinear circumferential surface PWSCCs. As a result, it was found that the collinear cracks showed earlier coalescence and penetration times than the a single crack, and the times increased with the distance. In addition, it is expected that penetration may occur before coalescence of two cracks if they are more than a specific distance apart.

The effect of crack length on SIF and elastic COD for elbow with circumferential through wall crack

  • Kim, Min Kyu;Jeon, Jun Hyeok;Choi, Jae Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2092-2099
    • /
    • 2020
  • Many damages due to flow-accelerated corrosion and cracking have been observed during recent in-service inspections of nuclear power plants. To determine the operability or repair for damaged pipes, an integrity evaluation related to the damaged piping system should be performed by using already proven code and standards. One of them, the ASME Code Case is most popularly used to integrity assessment in nuclear power plants. However, the recent version of CC N-513 still recommends the simplified method which means a damaged elbow is assumed as an equivalent straight pipe. In addition, to enhance the accuracy integrity assessment in elbow, several previous studies recommend that the SIF and elastic COD values for an elbow with relatively large crack could be predicted by an interpolation technique. However, those estimates for elbow with relatively large crack might be derived to inaccurate results for crack growth analysis, such as for the allowable crack size and life estimation. Therefore, in this paper, the effect of crack length (0.3≤θ1/π≤0.5) on SIF and elastic COD for elbow is systematically investigated. Then, for large crack in elbow, accurate estimates for SIF and elastic COD, which are widely used to assess the integrity of elbows, are proposed. Those proposed solutions are expected to be the technical basis for revisions of CC N-513-4 through the validation.

Estimations of Strain-Based J-integral and CTOD for Circumferential Outer Surface Crack in the Weld of Gas Pipeline Under Axial Displacement (축방향 변위가 작용하는 가스 파이프라인 용접부에 존재하는 원주방향 외부표면균열의 변형률 기반 J-적분 및 CTOD 계산)

  • Kim, Kyoung-Min;Park, Ji-Su;Moon, Ji-Hee;Jang, Youn-Young;Park, Seung-Hyun;Huh, Nam-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.100-109
    • /
    • 2020
  • Pipelines subjected to ground movement would be easily exposed to large-scale deformation. Since such deformations may cause the pipeline failure, it is important to ensure the safety of pipelines in various operation conditions. However, crack in weld metal have been considered as one of the main causes that can deteriorate the structural integrity of the pipeline. For this reason, the structural integrity of the pipe containing the crack in the weld should be obtained. In order to assess cracked pipe, J-integral and crack-tip opening displacement(CTOD) have been applied widely as the elastic-plastic fracture mechanics parameters representing crack driving force. In this study, engineering solutions to calculate the J-integral and CTOD of pipes with a circumferential outer surface crack in the weld are proposed. For this purpose, 3-dimensional elastic-plastic finite element(FE) analyses have been performed considering the effect of overmatch and width of weld. The shape of the weld was simplified to I-groove, and axial displacement was employed as for loading condition. Based on FE results, the effects of crack size, material properties and width of weldment on J-integral and CTOD were investigated. Additionally, the J-integral and CTOD for I-groove were compared with those for V-groove to examine the effects of the weld shape, and a proportionality coefficient of J-integral and CTOD was calculated from the results of this paper.

Analysis of Patched Cylindrical Shells with Circumferential Through-Wall Cracks (원주방향 관통균열을 갖는 원통형 쉘 구조의 패치보강 해석)

  • Ahn, Jae-Seok;Kim, Young-Wook;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.411-418
    • /
    • 2012
  • In this study, behavior of unpatched and patched cylindrical shells with through-wall cracks has been estimated using numerical experiments, and patching effect of them has been investigated according to various patching parameters. To show credibility of numerical models considered, two ways such as h- and p-methods have been adopted. Also, domain integral method and virtual crack extension method have been considered to calculate energy release rates based on linear elastic fracture mechanics. For examples, the unpatched cylindrical shells with circumferential cracks under remote tension have firstly been analyzed to show the validity of finite element modeling with h-method or p-method, and then the results have been compared with literature values published. Next, the sensitive analysis of patch repaired problems in terms of thickness of patch and adhesive, shear modulus of adhesive, composite material type of patch, crack length, etc. has been carried out.

Plastic Limit Pressure Solutions for Cracked Pipes Using 3-D Finite Element Method (3차원 유한요소해석을 통해 도출한 균열배관의 소성한계압력식)

  • Shim, Do-Jun;Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • Based on detailed FE limit analyses, the present paper provides tractable approximations fer plastic limit pressure solutions fur axially through-wall-cracked pipe; axially (inner) surface-cracked pipe; circumferentially through-wall-cracked pipe; and circumferentially (inner) surface-cracked pipe. In particular, for surface crack problems, the effect of the crack shape, the semi-elliptical shape or the rectangular shape, on the limit pressure is quantified. Comparisons with existing analytical and empirical solutions show a large discrepancy in circumferential short through-wall cracks and in surface cracks (both axial and circumferential). Being based on detailed 3-D FE limit analysis, the present solutions are believed to be the most accurate, and thus to be valuable information not only for plastic collapse analysis of pressurised piping but also for estimating non-linear fracture mechanics parameters based on the reference stress approach.

Elastic-Plastic Fracture Mechanics Analyses For circumferential Part-through Surface Cracks At The Interface Between Elbows and Pipes (직관과 곡관의 경계 용접부에 존재하는 원주방향 표면균열에 대한 탄소성 파괴역학 해석)

  • Song, Tae-Kwang;Oh, Chang-Kyun;Kim, Yun-Jae;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1766-1771
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions for straight pipes.

  • PDF

Crack-tip Stress Field of Fully Circumferential Surface Cracked Pipe Under Combined Tension and Thermal Loads (원주방향 부분 관통 균열이 존재하는 직관에 인장하중과 열하중의 복합하중이 가해지는 경우의 균열 선단 응력장)

  • Je, Jin Ho;Kim, Dong Jun;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1207-1214
    • /
    • 2014
  • Under excessive plasticity, the fracture toughness of a material depends on its size and geometry. Under fully yielded conditions, the stresses in a material near its crack tip are not unique but rather depend on the geometry. Therefore, the single-parameter J-approach is limited to a high-constraint crack geometry. The JQ theory has been proposed for establishing the crack geometry constraints. This approach assumes that the crack-tip fields have two degrees of freedom. In this study, the crack-tip stress field of a fully circumferential surface-cracked pipe under combined loads is investigated on the basis of the JQ theory by using finite element analysis. The combined loads are a tensile axial force and the thermal gradient in the radial direction. Q-stresses of the crack geometry and its loading state are used to determine the constraint effects. The constraint effects of secondary loading are found to be greater than those of primary loading. Therefore, thermal shock is believed to be the most severe loading condition of constraint effects.

Application of Enhanced Reference Stress Method to Nuclear Piping LBB Analysis under Combined Tension and Bending (복합하중이 작용하는 원자력 배관의 파단전누설 해석을 위한 개선된 참조응력법의 수치해석적 검증)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.67-73
    • /
    • 2001
  • Three dimensional, elastic-plastic finite element(FE) analyses for circumferential through-wall cracked pipes under combined tension and bending are performed using actual tensile data of stainless steel, for two purposes. The first one is to validate the recently-proposed enhanced reference stress (ERS) method to estimate the J-integral and COD for circumferential through-wall cracked pipes under combined tension and bending. The second one is to compare those results with the GE/EPRI estimations. The FE results of the J-integral and the COD, resulting from six cases of proportional and non-proportional combined tension and bending, compare very well with those estimated from the proposed method. Excellent agreements of the proposed method with the detailed FE results provide sufficient confidence in the use of the proposed method to the Leak-Before-Break(LBB) analysis of through-wall cracked pipes under combined tension and bending.

  • PDF