• Title/Summary/Keyword: circulation frequency

Search Result 223, Processing Time 0.02 seconds

Left Ventricular-Right Atrial Communication: Report Of 2 Cases (L-VRA Communication 치험 2예)

  • 이광숙
    • Journal of Chest Surgery
    • /
    • v.14 no.4
    • /
    • pp.399-402
    • /
    • 1981
  • Because of recent advances in cardiac surgery and diagnostic techniques, left ventricular-right atrial communication has been reported with increasing frequency. Recently we experienced 2 cases of left ventricular-right atrial communication, which were corrected surgically. Preoperative diagnosis was incorrect In both cases as ventricular septal defect. The type of defect was supravalvular in case 1 and case 2. Both cases were successfully closed with the aid of extracorporeal circulation and discharged with good results.

  • PDF

SEPARATION CONTROL MECHANISM USING SYNTHETIC JET ON AIRFOIL (익형에서의 synthetic jet을 이용한 박리제어 mechanism)

  • Kim, S.H.;Kim, W.;Hong, W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.60-66
    • /
    • 2007
  • Separation control has been performed using synthetic jets on airfoil at high angle of attack. Computed results demonstrated that stall characteristics and control surface performance could be substantially improved by resizing separation vortices. It was observed that the actual flow control mechanism and flow structure is fundamentally different depending on the range of synthetic jet frequency. For low frequency range, small vortices due to synthetic jet penetrated to the large leading edge separation vortex, and as a result, the size of the leading edge vortex was remarkably reduced. For high frequency range, however, small vortex did not grow up enough to penetrate into the leading edge separation vortex. Instead, synthetic jet firmly attached the local flow and influenced the circulation of the virtual airfoil shape which is the combined shape of the main airfoil with the separation vortex. Theses results show the characteristic of unsteady flow of single synthetic jet. Beside, we researched on multi-array synthetic jet to obtain applicable synthetic jet velocity. Multi-location synthetic jet is proposed to eliminate small vortex on suction surface of airfoil. With the results, we concluded that the flow around airfoil is stable by high frequency synthetic jet with elimination of small vortex and confirmation of stable flow. Moreover, performance of multi-array/multi-location synthetic jet can be improved by changing phase angle of multi-location synthetic jet.

  • PDF

A High Efficiency MHD Lamp Ballast with a Frequency Controlled Synchronous Rectifier (주파수 가변 동기 정류기를 이용한 고효율 MHD 램프 안정기)

  • Hyun B.C.;Lee I.K.;Cho B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.71-75
    • /
    • 2004
  • In this paper, in order to develop a simple and high efficient ballast without an external igniter, a half-bridge type ballast with a coupled inductor and a frequency controlled synchronous rectifier is proposed. The internal LC resonance of the buck converter is used In generate a high voltage pulse for the ignition, and the coupled inductor filter is used for steady state ripple cancellation. Also, a synchronous buck converter is applied for the DC/DC converter stage. In order to improve the efficiency of the ballast, a frequency control method is proposed. This scheme reduces a circulation current and turn off loss of the MOSFET switch on the constant power operation, which results in increase of the efficiency of the ballast system about $4\%$, compared to a fixed frequency control. It consists a 2-stage version ballast with a PFC circuit. The results are verified with hardware experiments.

  • PDF

A Comparative Analysis on Cardiovascular Research in Korea and the United States (심장혈관학 분야의 지적구조 규명에 관한 연구 - 국내와 미국을 중심으로 -)

  • Lim, Ji Young;Chung, EunKyung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.27 no.1
    • /
    • pp.111-134
    • /
    • 2016
  • The purpose of this study is to investigate and compare the intellectual structure of cardiovascular research area in Korea and the United States. For the purpose of this study, a data set was collected; one journal Korean Circulation Journal is in Korea and two journals Circulation, and Circulation Research are in the United States. Based on the frequency of citation counts, 45 authors and 53 authors were selected for author co-citation analysis. By multidimensional scaling, clustering, and factor analyses, the results demonstrate that researchers in both countries commonly tend to work on several, rather than focus on certain sub-areas. In both countries, the core areas are revealed as 'cardiovascular disease treatment', 'cardiovascular disease diagnose', 'cardiovascular disease fundamentals', and 'cardiovascular disease preventives'. One of distinctive differences between two is that research in Korea is likely to focus on clinical medicines while research in the United States tends to be on fundamental medicines. While the area of 'Disorders of Rhythm' is revealed in Korea, 'Pharmacology of the Cardiovascular System' area is found in the United States. In addition, the sub-areas of fundamental medicines such as 'Epidemiology of Cardiovascular Disease', 'Biology', 'Biochemistry', 'Physiology' are revealed distinctively in the United States.

Characteristics of Air Stagnation over the Korean Peninsula and Projection Using Regional Climate Model of HadGEM3-RA (한반도 대기정체의 특성 및 지역기후모델 HadGEM3-RA를 이용한 미래 전망)

  • Kim, Do-Hyun;Kim, Jin-Uk;Kim, Tae-Jun;Byon, Jae-Young;Kim, Jin-Won;Kwon, Sang-Hoon;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.377-390
    • /
    • 2020
  • Not only emissions, but also atmospheric circulation is a key factor that affects local particulate matters (PM) concentrations in Korea through ventilation effects and transboundary transports. As part of the atmospheric circulation, air stagnation especially adversely affects local air quality due to weak ventilation. This study investigates the large-scale circulation related to air stagnation over Korea during winter and projects the climate change impacts on atmospheric patterns, using observed PM data, reanalysis and regional climate projections from HadGEM3-RA with Modified Korea Particulate matter Index. Results show that the stagnation affects the PM concentration, accompanied by pressure ridge at upper troposphere and weaken zonal pressure gradient at lower troposphere. Downscaling using HadGEM3-RA is found to yield Added-Value in the simulated low tropospheric winds. For projection of future stagnation, SSP5-8.5 and SSP1-2.6 (high and low emission) scenarios are used here. It has been found that the stagnation condition occurs more frequently by 11% under SSP5-8.5 and by 5% under SSP1-2.6 than in present-day climate and is most affected by changes in surface wind speed. The increase in the stagnation conditions is related to anticyclonic circulation anomaly at upper troposphere and weaken meridional pressure gradient at lower troposphere. Considering that the present East Asian winter monsoon is mainly affected by change in zonal pressure gradient, it is worth paying attention to this change in the meridional gradient. Our results suggest that future warming condition increase the frequency of air stagnation over Korea during winter with response of atmospheric circulation and its nonlinearity.

A Inverter Control System for Vertical Circulation Parking Facility (수직순환식 입체주차설비용 인버터 제어시스템)

  • Choi, Chul;Lee, Jin-Ha;Kim, Chul-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.294-302
    • /
    • 2004
  • In this study, we developed the inverter system to control Induction motor for the vertically circulation parking facility. In the case of calling a pallet, a car parking space, we basically stoned conventional system's problems, pallet is uncontrollable to the fixed position and braking system was worn by forcer braking with remaining speed. Also, by appling to converter controller, added to power regenerative control function, we confirmed the reduce of power supply capacity and the energy saving effect according to increasing operation frequency. The validity of this system is verified by 55kw induction motor driving system. Via this study, the proposed system shows the efficient use of parking facility and good operation characteristics by implementing position and speed control effectively on condition of load and shows energy saying effect by power factor control for the vertically circulation parking facility operation.

Implementation of The Fluid Circulation Blood Pressure Simulator (유체 순환 혈압 시뮬레이터의 구현)

  • Kim, C.H.;Lee, K.W.;Nam, K.G.;Jeon, G.R.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.768-776
    • /
    • 2007
  • A new type of the fluid circulation blood pressure simulator was proposed to enhance the blood pressure simulator used for the development and evaluation of automatic sphygmomanometers. Various pressure waveform of fluid flowing in the pipe was reproduced by operating the proportional control valve after applying a pressure on the fluid in pressurized oil tank. After that, appropriate fluid was supplied by operating the proportional control valve, which enabled to reproduce various pressure wave of the fluid flowing in the tube. To accomplish this work, the mathematical model was carefully reviewed in cooperating with the proposed simulator. After modeling the driving signal as input signal and the pressure in internal tube as output signal, the simulation on system parameters such as internal volume, cross-section of orifice and supply pressure, which are sensitive to dynamic characteristic of system, was accomplished. System parameters affecting the dynamic characteristic were analyzed in the frequency bandwidth and also reflected to the design of the plant. The performance evaluator of fluid dynamic characteristic using proportional control signal was fabricated on the basis of obtained simulation result. An experimental apparatus was set-up and measurements on the dynamic characteristic, nonlinearity, and rising and falling response was carried out to verify the characteristic of the fluid dynamic model. Controller was designed and thereafter, simulation was performed to control the output signal with respect to the reference input in the fluid dynamic model using the proposed proportional control valve. Hybrid controller combined with an proportional controller and feed-forward controller was fabricated after applying a disturbance observer to the control plant. Comparison of the simulations between the conventional proportional controller and the proposed hybrid simulator indicated that even though the former showed good control performance.

Characteristics of Tropical Cyclones Over the Western North Pacific in 2009 (2009년 태풍 특징)

  • Cha, Eun-Jeong;Kwon, H. Joe;Kim, Sejin
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.451-466
    • /
    • 2010
  • This edition has continued since 2006 tropical cyclone season our effort to provide standard tropical cyclone summaries by the western North Pacific basin and detailed reviews of operationally or meteorologically significant tropical cyclones to document significant challenges and shortfalls in the tropical cyclone warning system to serve as a focal point for research and development efforts. The tropical cyclone season of 2009 in the western North Pacific basin is summarized and the main characteristics of general atmospheric circulation are described. Also, the official track and intensity forecasts of these cyclones are verified. The total number is less than 59-year (1951~2009) average frequency of 26.4. The 2009 western North Pacific season was an inactive one, in which 22 tropical storms generated. Of these, 13 TCs reached typhoon (TY) intensity, while the rest 9 TCs only reached severe tropical storm (STS) and tropical storm (TS) intensity - three STS and six TS storms. On average of 22 TCs in 2009, the Korea Meteorological Administration official track forecast error for 48 hours was 219 km. There was a big challenge for individual cyclones such as 0902 CHAN-HOM, 0909 ETAU, and 0920 LUPIT resulting in significant forecast error, with both intricate tracks and irregular moving speed. There was no tropical cyclone causing significant direct impact to the country. The tropical cyclone season in 2009 began in May with the formation of KUJIRA (0901). In September and October, ten TSs formed in the western North Pacific in response to enhanced convective activity. On the other hand, the TC activity was very weak from June to July. It is found that the unusual anti-cyclonic circulation in the lower level and weak convection near the Philippines are dominant during summertime. The convection and atmospheric circulation in the western North Pacific contributed unfavorable condition for TC activity in the 2009 summertime. Year 2009 has continued the below normal condition since mid 1990s which is apparent in the decadal variability in TC activity.

The Effect of Transverse Vibration on Red Blood Cell Aggregation and Blood Viscosity

  • Shin, Se-Hyun;Ku, Yun-Hee;Park, Myung-Su;Suh, Jang-Soo
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.4-12
    • /
    • 2003
  • The present study investigated the effect of transverse vibration on the hemorheological characteristics of blood using a newly designed pressure-scanning capillary viscometer. As vibration was applied, aggregated blood cells (rouleaux) were disaggregated. The range of vibration frequency and amplitude are $0{\sim}100\;Hz$ and $0{\sim}0.8\;mm$, respectively for a capillary diameter 0.84 mm. As vibration increased, blood viscosity initially increased and tended to decrease. In order to delineate the unexpected results, the present study proposed two counteracting mechanisms of vibration related with red blood cell (RBC) aggregation affecting hemo-rheological properties. One is the reduction of RBC aggregation due to vibration causing an increase of blood viscosity. The other is forced cell migration due to the transverse vibration, which in turn forms a cell-free layer near the tube wall and causes a decrease of flow resistance.

  • PDF

Flow Patterns and Critical Circulation Frequency for Mixing in Shaking Vessels with Various Geometry (진동교반조의 기하형상에 따른 유동상태와 혼합한계회전수)

  • Lee, Young-Sei;Kim, Moon-Gab;Kim, Jong-Shik;Ue, Takafumi;Kato, Yoshihito
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.49-56
    • /
    • 2003
  • Based on the flow patterns of cylindrical vessel, the flow patterns of conical vessel, spherical vessel, rectangular vessel and cylindrical vessel with baffles were visualized by a trace method using aluminum powder. In addition, the correlations of the critical circulating frequency for mixing were derived from the experimental results. The conical and spherical vessels which have circular cross sections were same effective as cylindrical vessel for the shake mixing due to developing the rotational flow. Both a rectangular vessel and a cylindrical vessel with baffles should not be adapted for shake mixing because of not developing rotational flows in these type of vessels.

  • PDF