• 제목/요약/키워드: circular signals

검색결과 137건 처리시간 0.027초

유체 누출에서의 음향방출 신호분석 (Analysis of Acoustic Emission Signals from Fluid Leakage)

  • 김용민;윤용구;김호철
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.413-421
    • /
    • 1990
  • Acoustic emission signals due to leak from circular holes of 0.4, 1, 2 and 4mm diameter and rectangular slits of different geometry having the same cross section as 4mm diameter hole was studied both analytically and experimentally. Acoustic emission signals from a wide-band type transducer were transformed to digital signals through a digital oscilloscope, and $V_{rms}$ and frequency spectrum were obtained by processing digital signals. Relationships between acoustic parameters and fluid mechanical parameters were derived analytically. A quadrapole aerodynamic model was applied in the analysis of leak from the circular holes and $V_{rms}$ was found to be proportional to the root square of leak rate through the circular hole. A modified model based on dipole source mechanism and laminar equivalent diameter was applied in the analysis of leak signals from the rectangular slits. In the case of constant pressure, $V_{rms}$ increased as the laminar equivalent diameter of slit decreased. In the case of constant laminar equivalent diameter, however the result was similar to that for leak from the circular hole. The frequency spectra of leak signals shows the same frequency characteristics irrespective of the pressure difference.rence.

변조 고주파에 의한 금속표면 결함 검출 (Detection of the Defect on the Metal Surface Using the Modulated Microwave)

  • 주광태;정성혜;송기영;김진옥
    • 비파괴검사학회지
    • /
    • 제19권3호
    • /
    • pp.173-179
    • /
    • 1999
  • 고주파를 이용하여 금속 표면의 원형 프레스 결함, 원형 관통 결함 및 선형 프레스 결함 등을 조사하였다. 본 실험에서는 3kHz 변조된 9.2GHz의 주파수를 사용했으며, 조사 방법으로는 반사법, 투과법, 주파수 고정법 등을 이용하였다. 고주파가 원형 프레스 결함과 원형 관통 결함에서 반사 신호의 크기가 큰 폭으로 변했다. 원형 프레스 결함에서는 반사신호에 의한 결함의 크기가 원래 크기의 2.5배로 확대되어 측정되었으며, 원형 관통 결함에서는 결함의 크기가 두 배로 확대되어 측정되었다. 또한, 선형 결함에서 고주파 반사신호의 크기는 결함폭의 증가와 함께 커졌으며, 결함 깊이가 2.4mm일 때 결함폭이 50mm에서, 결함 깊이가 1.2mm 및 0.45mm에서는 결함폭이 55mm일 때 각각 최대값을 나타냈다.

  • PDF

Signal Number Estimation Algorithm Based on Uniform Circular Array Antenna

  • Heui-Seon, Park;Hongrae, Kim;Suk-seung, Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.43-49
    • /
    • 2023
  • In modern wireless communication systems including beamformers or location-based services (LBS), which employ multiple antenna elements, estimating the number of signals is essential for accurately determining the quality of the communication service. Representative signal number estimation algorithms including the Akaike information criterion (AIC) and minimum description length (MDL) algorithms, which are information theoretical criterion models, determine the number of signals based on a reference value that minimizes each criterion. In general, increasing the number of elements mounted onto the array antenna enhances the performance of estimating the number of signals; however, it increases the computational complexity of the estimation algorithm. In addition, various configurations of array antennas for the increased number of antenna elements should be considered to efficiently utilize them in a limited location. In this paper, we introduce an efficient signal number estimation algorithm based on the beamspace based AIC and MDL techniques that reduce the computational complexity by reducing the dimension of a uniform circular array antenna. Since this algorithm is based on a uniform circular array antenna, it presents the advantages of a circular array antenna. The performance of the proposed signal number estimation algorithm is evaluated through computer simulation examples.

원형어레이를 이용한 시.공간 스펙트럼 동시추정 (Simultaneous estimation of the temporal and spatial spectrum using circular array)

  • 황성준;주경환;성하종;김영수;윤대희
    • 한국통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.347-356
    • /
    • 1996
  • In this paper, we present the circular array structure for estimating the temporal and spatial specturm of multiple narrowband incoherent signals which have different frequencies. The conventional linear array is computationally demanding for simultaneously estimating the spatial and temporal spectrum since it requires the tapped delay line filer. The statistical performance of the circular array is never deteriorated eve though it requires much less computational load than the uniform linear array. Especially, it is shown that the circular array resolves the direction-of-arrivals of the multiple signals without the spatial and temporal aliasing the fundamental nonuniform-sampling property prossessed by it. Computer simulation results are shown to demonstrate the better performance achieved with the circular array geometry relative to that obtained with a uniform linear array with taps.

  • PDF

등각원형배열을 고려한 코히어런트 다중신호 방향탐지 기법 연구 (The Study of Direction Finding Algorithms for Coherent Multiple Signals in Uniform Circular Array)

  • 박철순;이호주;장원
    • 한국군사과학기술학회지
    • /
    • 제12권1호
    • /
    • pp.97-105
    • /
    • 2009
  • In this paper, the performance of AP(Alternating Projection) and EM(Expectation Maximization) algorithms is investigated in terms of detection of multiple signals, resolvability of coherent signals and the efficiency of sensor array processing. The basic idea of these algorithms is utilization of relaxation technique of successive 1D maximization to solve a direction finding problem by maximizing the multidimensional likelihood function. It means that the function is maximized over only for a single parameter while the other parameters are fixed at each step of the iteration. According to simulation results, the algorithms showed good performance for both incoherent and coherent multiple signals. Moreover, some advantages are identified for direction finding with very small samples and fast convergence. The performance of AP algorithm is compared with that of EM using multiple criteria such as the number of sensor, SNR, the number of samples, and convergence speed over uniform circular array. It is resulted AP algorithm is superior to EM overally except for one criterion, convergence speed. Especially, for EM algorithm there is no performance difference between incoherent and coherent case. In conclusion, AP and EM are viable and practical alternatives, which can be applied to a direction under due to the resolvability of multi-path signals, reliable performance and no troublesome eigen-decomposition of the sample-covariance matrix.

강자성 배관 외.내부 면의 이중 원형 결함의 깊이와 응력이 누설자속에 미치는 영향 (Effect of Double Circular Pit Depth and Stress on Far and Near-side Magnetic Flux Leakage at Ferromagnetic Pipeline)

  • 유권상;박영태;손대락
    • 한국자기학회지
    • /
    • 제13권2호
    • /
    • pp.76-81
    • /
    • 2003
  • 매설된 송유관이나 가스관의 외부면과 내부면에 생성된 원형 결함(double circular pit) 부근에서 누설되는 자속 신호에 미치는 결함깊이와 인장응력(tensile stress)의 영향을 3차원 유한요소법을 이용하여 계산하였다. 배관의 축 및 방사상 방향의 누설자속 (Magnetic Flux Leakage: MFL) 신호는 배관 외$.$내부 면의 이중 결함깊이와 인장응력에 의해 영향을 받으며, 결함의 깊이가 깊어질수록 인장응력이 커질수록 MFL 신호는 증가하였다. 그러나 원주 방향의 MFL 신호는 결함깊이와 인장응력에 거의 영향을 받지 않았다.

원형 형상 배열 안테나를 적용한 위성 빔형성 시스템 성능 분석 (Performance Analysis of Beamforming Satellite System Applying Circular Array Antenna)

  • 김태윤;황석승
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.845-852
    • /
    • 2019
  • 위성 기반의 신호정보수집(: Signal Intelligence, SIGINT)은 지형적인 제약사항 없이 정확한 데이터를 수집하는 것을 목적으로 하는데, 위성통신의 특성상 수집 신호의 전력이 매우 낮으며, 재밍을 포함한 간섭신호의 영향에 매우 취약하다. 따라서 위성을 사용하여 지상의 다양한 신호들을 수집하기 위해서는 높은 수준의 특정신호 도래각(: Angle-of-Arrival, AOA) 추정과 간섭제거 기술이 요구된다. 또한, 수집된 정보를 정확히 지상의 관제 센터에 전달하기 위해서는 높은 수준의 송신 빔형성(Beamforming) 기술이 필요하다. 본 논문에서는 이러한 기술들을 고려한 원형 형상 배열 안테나 기반의 빔형성 위성 시스템을 제시하고, 컴퓨터 시뮬레이션을 통해 시스템의 성능을 평가하고 분석한다. 원형 형상 배열 안테나 구조는 위성에 탑재하기 적합한 안테나 구조로써 위성 기반의 신호정보수집 시스템에 효율적으로 사용될 수 있을 것으로 판단된다.

Novel FFT Acquisition Scheme with Baseband Resampling for Multi-GNSS Receivers

  • Jinseok, Kim;Sunyong, Lee;Hung Seok, Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.59-65
    • /
    • 2023
  • A GNSS receiver must perform signal acquisition to estimate the code phase and Doppler frequency of the incoming satellite signals, which are essential information for baseband signal processing. Modernized GNSS signals have different modulation schemes and long PRN code lengths from legacy signals, which makes it difficult to acquire the signals and increases the computational complexity and time. This paper proposes a novel FFT/Inverse-FFT with baseband resampling to resolve the aforementioned challenges. The suggested algorithm uses a single block only for the FFT and thereby requires less hardware resources than conventional structures such as Double Block Zero Padding (DBZP). Experimental results based on a MATLAB simulation show this algorithm can successfully acquire GPS L1C/A, GPS L2C, Galileo E1OS, and GPS L5.

원형어레이에서의 새로운 어레이 공분산 행렬 추정 방법 (A new metchod for estimating array covariance matrix in circular array)

  • 김영수;김영수;김창주;박한규;최상삼
    • 한국통신학회논문지
    • /
    • 제22권7호
    • /
    • pp.1534-1542
    • /
    • 1997
  • In this paper, we present a performance improvement method for the direction-of-arrival (DOA) estimation algorithm of the narrowband signals incident on a uniform circular array. It is very important to estimate the covariance matrix effectively because the performance of DOA algorithm mainly depends on the exactness of the sampel coveriance matrix which is computed from the received samples of signals. In case of uniform circular array with the even number sensors, the structure of the arrray has a useful geometrical property. Therefore we present the method which can estimate covariance matrix more effectively using this property. The simulation results are shown to demonstrate the superior perfodrmance obtained by the proposed covariance matrix estimation method relative to that of the conventional estimation method.

  • PDF

Direct position tracking method for non-circular signals with distributed passive arrays via first-order approximation

  • Jinke Cao;Xiaofei Zhang;Honghao Hao
    • ETRI Journal
    • /
    • 제46권3호
    • /
    • pp.421-431
    • /
    • 2024
  • In this study, a direct position tracking method for non-circular (NC) signals using distributed passive arrays is proposed. First, we calculate the initial positions of sources using a direct position determination (DPD) approach; next, we transform the tracking into a compensation problem. The offsets of the adjacent time positions are calculated using a first-order Taylor expansion. The fusion calculation of the noise subspace is performed according to the NC characteristics. Because the proposed method uses the signal information from the previous iteration, it can realize automatic data associations. Compared with traditional DPD and two-step localization methods, our novel process has lower computational complexity and provides higher accuracy. Moreover, its performance is better than that of the traditional tracking methods. Numerous simulation results support the superiority of our proposed method.