• Title/Summary/Keyword: circular polarization.

Search Result 270, Processing Time 0.024 seconds

Design of TX/RX Broadband L-Type Circular Polarization Antenna using LTCC at K/Ka Band (K/Ka 대역에서의 LTCC를 이용한 송수신 겸용 L형태 광대역 원형 편파 안테나)

  • Oh Min-Seok;Cheon Yung-Min;Kim Sung-Nam;Lee Jong-Moon;Pyo Cheol-Sig;Choi Jae-Ick;Cheon Changyul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.872-879
    • /
    • 2004
  • The TX/RX broadband L-type circular polarization antenna using LTCC(Low Temperature Co-fired Ceramic) for satellite communication at K, Ka band(20~21 GHz/30~31 GHz) has been presented. This antenna has been analyzed in compensation for LTCC with relative permittivity 5.2 and could have been integrated with RF component. Also antennas on LTCC enable :o reduce loss of RF system due to integrate with RF circuits and to light weight, and thus, generally one can reduce size of the RF system. As the geometry of this antenna presented is made simple by L type of monopole antenna, it is easily manufactured by LTCC progress and enables to reduce loss.

Design of Singly Fed Microstrip Antennas Having Circular Polarization (단일 급전 원형 편파 마이크로스트립 안테나 설계)

  • 오세창;전중창;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.998-1009
    • /
    • 1999
  • In this paper, a microstrip aperture-patch antenna and a microstrip ring antenna, which have single microstrip line feeding systems for the circular polarization, are designed, and experimental results are presented at X-band. The microstrip aperture-patch antenna is characterized by its wide operating frequency range, and the microstrip ring antenna is suitable for a basic radiator in the large array antenna due to its small size. Several design parameters for these antennas are considered and analyzed to improve antenna characteristics such as VSWR bandwidth and axial ratio. Initially, the sizes of the aperture and ring radiator are determined on a basis of the cavity model, then shapes of the patch within the aperture and the inner stub of the ring are optimized using Ensemble software. Measurement results show that the aperture-patch antenna has 25% of VSWR bandwidth and 1.2dB of axial ratio at the boresight, and the ring antenna has 6.7% of VSWR bandwidth and 1.6dB of axial ratio at the boresight.

  • PDF

Design of an Anti-Jamming Five-Element Planar GPS Array Antenna (재밍대응 5소자 평면 GPS 배열 안테나 설계)

  • Seo, Seung Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.628-636
    • /
    • 2014
  • This paper describes the design and analysis of five-element planar array antenna of an anti-jamming satellite navigation system. We propose a design of multi-layer patch antenna for Global Positioning System(GPS) $L_1/L_2$ dual bands. The proposed antenna has two ports feeding network with a hybrid chip coupler for a broad bandwidth with Right-Handed Circular Polarization(RHCP). The measurement results show the bore-sight gains of 1.10 dBic($L_1$) and 0.37 dBic($L_2$) for the center element. The bore-sight gains of an edge element are 0.99 dBic($L_1$) and -0.57 dBic($L_2$). At a fixed elevation angle of $30^{\circ}$, antennas show average gains of -2.08 dBic ($L_1$) and -5.33 dBic($L_2$) for the center element, and average gains of -0.40 dBic($L_1$) and -2.09 dBic($L_2$) for the edge elements. The results demonstrate that the proposed array antenna is suitable for anti-jamming applications.

Design of a Planar Log-Spiral Antenna for Testing Plane-Wave Shielding Effectiveness (평면파 차폐효과 시험용 평판형 로그 스파이럴 안테나 설계)

  • Chung, Yeon-Choon
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.762-767
    • /
    • 2019
  • The plane-wave shielding effectiveness is typically measured for horizontal and vertical polarizations using a linearly polarized antenna. However, this typical measurement method results in big evaluation fees due to very long measurement time as well as huge idle space for maintenance, these problems is more severe especially in large shielded enclosures such as EMP protection facilities to be built in indoor buildings and underground. This paper describes the design and fabrication process and results of a planar log-spiral antenna applicable to the evaluation of the electromagnetic shielding effectiveness of a large EMP protection facility. Since the proposed antenna has a circular polarization, there is no need to separately measure the horizontal and vertical polarizations. Therefore, the measurement time can be shortened by more than 1/2, and further, its small volume with a planar structure can reduce greatly idle space required for the maintenance.

Characteristics of Sequentially Rotated Array Microstrip Antennas Using Each Other Phase Delay (서로 다른 위상지연을 갖는 시퀀셜 로테이션 배열 마이크로스트립 안테나 특성)

  • 한봉희;김남현;노광현;강영진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7A
    • /
    • pp.537-546
    • /
    • 2003
  • This paper proposes an aperture coupled circular polarized patch antenna operating at ISM band(5GHz). For improving the characteristic and performance of broadband and circular polarization at single circular polarized patch antenna. We designed and analyzed the sequentially rotated arrayed(SRA) using phase delay of 0$^{\circ}$, 90$^{\circ}$, 180$^{\circ}$, 270$^{\circ}$and 0$^{\circ}$, 45$^{\circ}$, 90$^{\circ}$, 135$^{\circ}$. Experimental result, the SRA antenna using phase delay of 90$^{\circ}$and 45$^{\circ}$are improved at the wideband and axial ratio. Also, the SRA antenna using phase delay of 45$^{\circ}$verified that it is better bandwidth and axial ratio than the SRA antenna using phase delay of 90$^{\circ}$.

Design of a broadband CP antenna for RFID readers (RFID 리더용 광대역 원편파 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1759-1764
    • /
    • 2015
  • In this paper, we considered a design method of a circular polarization (CP) antenna for UHF (ultra high frequency) RFID (Radio Frequency IDentification) readers. The antenna is a dual-fed circular microstrip patch which produces right-handed CP. Quadrature hybrid coupler is used for dual feeding. The outputs of the coupler and circular patch are connected through copper wires, and the inductive reactance produced by the connecting wires is compensated by a ring-shaped slot inserted inside the circular patch. The effects of the geometrical parameters of the proposed antenna on the antenna performance are examined, and the parameters are adjusted to be suitable for the operation in North American UHF RFID band (902-928 MHz), which includes domestic UHF RFID band. The antenna is fabricated, and the experiment results reveal a frequency band of 854-993 MHz for a voltage standing wave ratio < 2. The fabricated antenna is connected to a commercial RFID reader, and it showed a good performance of tag identification.

3-Dimensinal Microstrip Patch Antenna for Miniaturization (소형화를 위한 3차원 구조마이크로스트립 패치 안테나)

  • 송무하;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.157-167
    • /
    • 2003
  • In this paper, to reduce the resonant length of patch, microstrip patch antenna of linear polarization which is suppressed at two radiation edges is designed and fabricated at the frequency of 1.575 GHz. The result is like that the resonant length of patch is 45 mm and the length reduction effect is 43.8 % when it is compared with that(80 mm) of plane type. The gain is 4.4 dBd and -3 dB beamwidths are 112$^{\circ}$ and 66$^{\circ}$ in the E-plane and H-plane, respectively. Also, to reduce the size of patch, microstrip patch antennas those are suppressed at four radiating comers are designed and fabricated at the same frequency in the linear and circular polarization, respectively. For linear polarization, at the 1.2 of width/length(W/L) ratio, the patch area is 53 mm $\times$ 63.6 mm and the size reduction effect is 56.1 % when compared with that(80 mm $\times$ 96 mm) of plane type. The gain is 4.3 dBd and the -3 dB beamwidths are 120$^{\circ}$ and 78$^{\circ}$ in the E-plane and H-plane, respectively. For circular polarization, the patch size(54.2 mm $\times$ 61.5 mm) is reduced by 47.2 % than that(76 mm $\times$ 83 mm) of plane type. -3 dB beamwidth of horizontal polarization in the z-x plane and vortical polarization in the y-z plane are 108$^{\circ}$ and 93$^{\circ}$, respectively and this means the increasement in both planes by 52$^{\circ}$ and 27$^{\circ}$ than those of plane type. The maximum gain is 2.5 dBd in the horizontal polarization in the z-x plane. Axial ratio is 1.5 dB at 1.575 GHz and the 2 dB axial ratio bandwidth(ARBW) is 20 MHz(1.3 %).

A Polarization-Switchable Microstrip Patch Antenna Using Corner Slots on Ground Plane and PIN Diodes (모서리 접지면 슬롯과 PIN 다이오드를 이용한 편파 변환 마이크로스트립 안테나)

  • Park, Chul-Woo;Lee, Tae-Hak;Choi, Jun-Ho;Yoon, Won-Sang;Pyo, Seong-Min;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.769-777
    • /
    • 2010
  • In this paper, a switchable circularly polarized microstrip patch antenna using PIN diodes and corner slots on ground plane is proposed at 2.4 GHz. The proposed antenna has a square microstrip patch and ground plane that consists of two pair of slots and PIN diodes. The electrical lengths of the slots are adjusted by using the switching characteristic of the PIN diode, so the polarization of the proposed antenna can be switchable between linear, left-handed(LH) and right-handed(RH). By separating the ground plane for the DC bias, the size reduction effect is also obtained. When the proposed antenna is operated as linear polarization, the return loss and impedance bandwidth are 15 dB, 59 MHz, and when operated as LH and RH polarization, the minimum axial ratio and 3-dB axial ratio bandwidth are 1.17 dB, 1.67 dB, 28 MHz, and 32 MHz, respectively.

On the Spatial and Temporal Variability of L-band Polarimetric SAR Observations of Permafrost Environment in Central Yakutia

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.47-60
    • /
    • 2017
  • The permafrost active layer plays an important role in permafrost dynamics. Ecological patterns, processes, and water and ice contents in the active layer are spatially and temporally complex depending on landscape heterogeneity and local-scale variations in hydrological processes. Although there has been emerging interest in the application of optical remote sensing techniques to permafrost environments, optical sensors are significantly limited in accessing information on near surface geo-cryological conditions. The primary objective of this study was to investigate capability of L-band SAR data for monitoring spatio-temporal variability of permafrost ecosystems and underlying soil conditions. This study exploits information from different polarimetric SAR observables in relation to permafrost environmental conditions. Experimental results show that each polarimetric radar observable conveys different information on permafrost environments. In the case of the dual-pol mode, the radar observables consist of two backscattering powers and one correlation coefficient between polarimetric channels. Among them, the dual-pol scattering powers are highly sensitive to freeze/thaw transition and can discriminate grasslands or ponds in thermokarst area from other permafrost ecosystems. However, it is difficult to identify the ground conditions with dual-pol observables. Additional backscattering powers and correlation coefficients obtained from quad-pol mode help understanding seasonal variations ofradar scattering and assessing geo-cryological information on soil layers. In particular, co-pol coherences atHV-basis and circular-basis were found to be very usefultools for mapping and monitoring near surface soil properties.

Active GNSS Antenna Implemented with Two-Stage LNA on High Permittivity Substrate

  • Go, Jong-Gyu;Chung, Jae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2004-2010
    • /
    • 2018
  • We propose a small active antenna to receive Global Navigation Satellite System (GNSS) signals, i.e., Global Positioning System (GPS) L1 (1,575MHz) and Russian Global Navigation Satellite System (GLONASS) L1 (1,600 MHz) signals. A two-stage low-noise amplifier (LNA) with more than 27 dB gain is implemented in the bottom layer of a three-layer antenna package. In addition, a hybrid coupler is used to combine signals from pair of proximately coupled orthogonal feeds with $90^{\circ}$ phase difference to achieve the circular polarization (CP) characteristic. Three layers of high permittivity (${\varepsilon}_r=10$) substrates are stacked and effectively integrated to have a small dimension of $64mm{\times}64mm{\times}7.42mm$ (including both circuit and antenna). The reflection coefficient of the fabricated antenna at the target frequency is below -10 dB, the measured antenna gain is above 26 dBic and the measured noise figure is less than 1.4 dB.