DOI QR코드

DOI QR Code

On the Spatial and Temporal Variability of L-band Polarimetric SAR Observations of Permafrost Environment in Central Yakutia

  • Park, Sang-Eun (Department of Energy and Mineral Resources Engineering, Sejong University)
  • Received : 2017.02.13
  • Accepted : 2017.02.16
  • Published : 2017.02.28

Abstract

The permafrost active layer plays an important role in permafrost dynamics. Ecological patterns, processes, and water and ice contents in the active layer are spatially and temporally complex depending on landscape heterogeneity and local-scale variations in hydrological processes. Although there has been emerging interest in the application of optical remote sensing techniques to permafrost environments, optical sensors are significantly limited in accessing information on near surface geo-cryological conditions. The primary objective of this study was to investigate capability of L-band SAR data for monitoring spatio-temporal variability of permafrost ecosystems and underlying soil conditions. This study exploits information from different polarimetric SAR observables in relation to permafrost environmental conditions. Experimental results show that each polarimetric radar observable conveys different information on permafrost environments. In the case of the dual-pol mode, the radar observables consist of two backscattering powers and one correlation coefficient between polarimetric channels. Among them, the dual-pol scattering powers are highly sensitive to freeze/thaw transition and can discriminate grasslands or ponds in thermokarst area from other permafrost ecosystems. However, it is difficult to identify the ground conditions with dual-pol observables. Additional backscattering powers and correlation coefficients obtained from quad-pol mode help understanding seasonal variations ofradar scattering and assessing geo-cryological information on soil layers. In particular, co-pol coherences atHV-basis and circular-basis were found to be very usefultools for mapping and monitoring near surface soil properties.

Keywords

References

  1. Abrams, M., B. Bailey, H. Tsu, and M. Hato, 2010. The ASTER Global DEM, Photogrammetric Engineering and Remote Sensing, 76(4):344-348.
  2. Anisimov, O., B. Fitzharris, J.O. Hagen, R. Jeffries, H. Marchant, F.E. Nelson, T. Prowse, and D.G. Vaughan, 2001. Polar Regions (Arctic and Antarctic): Climate Change: Impacts, Adaptation, and Vulnerability, the Contribution of Working Group II of the Intergovernmental Panel on Climate Change, Third Assessment Review, Cambridge University Press, Cambridge UK.
  3. Bartsch, A., R. Kidd, W. Wagner, and Z. Bartalis, 2007. Temporal and spatial variability of the beginning and end of daily spring freeze/thaw cycles derived from scatterometer data, Remote Sensing of Environment, 106(3): 360-374. https://doi.org/10.1016/j.rse.2006.09.004
  4. Boerner, W.-M., M.B. El-Arini, C.-Y. Chan, P.M. Mastoris, 1981. Polarization dependence in electromagnetic inverse problems, IEEE Transactions on Antennas and Propagation, AP-29(2):162-271.
  5. Brouchkov, A., M. Fukuda, A. Fedorov, P. Konstantinov, and G. Iwahana, 2004. Thermokarst as a short-term permafrost disturbance, Central Yakutia, Permafrost and Periglacial Processes, 15(1): 81-87. https://doi.org/10.1002/ppp.473
  6. Brown, J., K.M. Hinkel, and F.E. Nelson, 2000. The circumpolar active layer monitoring (CALM) program: research designs and initial results, Polar Geography, 24(3): 166-258. https://doi.org/10.1080/10889370009377698
  7. Chowdhury, T.A., C. Thiel, C. Schmullius, 2014. Growing stock volume estimation from L-band ALOS PALSAR polarimetric coherence in Siberian forest, Remote Sensing of Environment, 155: 129-144. https://doi.org/10.1016/j.rse.2014.05.007
  8. Cloude, S.R., 2010. Polarisation: Applications in Remote Sensing, Oxford University Press, Oxford, UK.
  9. Dee, D.P, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A.C.M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A.J. Geer, L. Haimberger, S.B. Healy, H. Hersbach, E.V. Holm, L. Isaksen, P. Kallberg, M. Kohler, M. Matricardi, A.P. McNally, B.M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thepaut, and F. Vitart, 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137(656):553-597. https://doi.org/10.1002/qj.828
  10. Du, J., J.S. Kimball, M. Azarderakhsh, R.S. Dunbar, M. Moghaddam, K.C. McDonald, 2015. Classification of Alaska Spring Thaw Characteristics Using Satellite L-Band Radar Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, 53(1): 542-556. https://doi.org/10.1109/TGRS.2014.2325409
  11. Frolking, S., K.C. McDonald, J.S. Kimball, J.B. Way, R. Zimmermann, and S.W. Running, 1999. Using the space-borne NASA scatterometer (NSCAT) to determine the frozen and thawed seasons of a boreal landscape, Journal of Geophysical Research, 104(D22): 27895-27908. https://doi.org/10.1029/1998JD200093
  12. Gauthier, Y., M. Tremblay, M. Bernier, and C. Furgal, 2010. Adaptation of a radar-based river ice mapping technology to the Nunavik context, Canadian Journal of Remote Sensing, 36: 168-185. https://doi.org/10.5589/m10-018
  13. Grosse, G. and B.M. Jones, 2011. Spatial distribution of pingos in northern Asia, Cryosphere, 5(1):13-33. https://doi.org/10.5194/tc-5-13-2011
  14. Hiyama, T., M.A. Strunin, R. Suzuki, J. Asanuma, M.Y. Mezrin, N.A. Bezrukova, and T. Ohata, 2003. Aircraft observations of the atmospheric boundary layer over a heterogeneous surface in eastern Siberia, Hydrological Processes, 17(14): 2885-2911. https://doi.org/10.1002/hyp.1440
  15. Iijima, Y., A.N. Fedorov, H. Park, K. Suzuki, H. Yabuki, T.C. Maximov, and T. Ohata, 2010. Abrupt increases in soil temperatures following increased precipitation in a permafrost region, Central Lena River Basin, Russia, Permafrost and Periglacial Processes, 21(1): 30-41. https://doi.org/10.1002/ppp.662
  16. Kimball, J. S., K.C. McDonald, A.R. Keyser, S. Frolking, and S.W. Running, 2001. Application of the NASA scatterometer (NSCAT) for determining the daily frozen and nonfrozen landscape of Alaska, Remote Sensing of Environment, 75(1): 113-126. https://doi.org/10.1016/S0034-4257(00)00160-7
  17. Lee, J.S. and E. Pottier, 2009. Polarimetric Radar Imaging: From Basics to Applications, CRC Press, Boca Raton, Fla, USA.
  18. Lee, J.S., D.L. Schuler, T.L. Ainsworth, E. Krogager, D. Kasilingam, and W.M. Boerner, 2002. On the estimation of radar polarization orientation shifts induced by terrain slopes, IEEE Transactions on Geoscience and Remote Sensing, 40(1): 30-41. https://doi.org/10.1109/36.981347
  19. Lin, H., J. Chen, Z. Pei, S. Zhang, and X. Hu, 2009. Monitoring sugarcane growth using ENVISAT ASAR data, IEEE Transactions on Geoscience and Remote Sensing, 47(8): 2572-2580. https://doi.org/10.1109/TGRS.2009.2015769
  20. Lopez, C.M.L., A. Brouchkov, A. Nakayama, F. Takakai, AN.N. Fedorov, and M. Fukuda, 2007. Epigenetic salt accumulation and water movement in the active layer of central Yakutia in eastern Siberia, Hydrological Processes, 21(1):103-109. https://doi.org/10.1002/hyp.6224
  21. Mattia, F., T. Le Toan, J.C. Souyris, G. De Carolis, N. Floury, F. Posa, and G. Pasquariello, 1997. The effect of surface roughness on multifrequency polarimetric SAR data, IEEE Transaction on Geoscience and Remote Sensing, 35(4): 954-965. https://doi.org/10.1109/36.602537
  22. Mermoz, S., S. Allain, M. Bernier, E. Pottier, J.J. Van Der Sanden, and K. Chokmani, 2014. Retrieval of river ice thickness from C-Band PolSAR data, IEEE Transaction on Geoscience and Remote Sensing, 52(6):3052-3062. https://doi.org/10.1109/TGRS.2013.2269014
  23. Mermoz, S., S. Allain, M. Bernier, E. Pottier, and I. Gherboudj, 2009. Classification of river ice using polarimetric SAR data, Canadian Journal of Remote Sensing, 35(5):460-473. https://doi.org/10.5589/m09-034
  24. Moriyama, T., Y. Yamaguchi, S. Uratsuka, T. Umehara, H. Maeno, M. Satake, A. Nadai, and K. Nakamura, 2005. A study on polarimetric correlation coefficient for feature extraction of polarimetric SAR data, IEICE Transactions on Communications, 88(6): 2355-2361.
  25. Oh, Y., K. Sarabandi, and F.T. Ulaby, 1992. An empirical model and an inversion technique for radar scattering from bare soil surfaces, IEEE Transactions on Geoscience and Remote Sensing, 30(2): 370-381. https://doi.org/10.1109/36.134086
  26. Park, S.-E., Y. Yamaguchi, and D. Kim, 2013. Polarimetric SAR remote sensing of the 2011 Tohoku earthquake using ALOS/PALSAR, Remote Sensing of Environment, 132: 212-220. https://doi.org/10.1016/j.rse.2013.01.018
  27. Park, S.-E., W.M. Moon, and E. Pottier, 2012. Assessment of scattering mechanism of polarimetric SAR signal from mountainous forest areas, IEEE Transaction on Geoscience and Remote Sensing, 50(11): 4711-4719. https://doi.org/10.1109/TGRS.2012.2194153
  28. Park, S.-E., A. Bartsch, D. Sabel, W. Wagner, V. Naeimi, and Y. Yamaguchi, 2011. Monitoring freeze/thaw cycles using ENVISAT ASAR global mode, Remote Sensing of Environment, 115(12): 3457-3467. https://doi.org/10.1016/j.rse.2011.08.009
  29. Park, S.-E., W.M. Moon, D. Kim, and J.-E. Kim, 2009. Estimation of surface roughness parameter in intertidal mudflat using airborne polarimetric SAR data, IEEE Transaction on Geoscience and Remote Sensing, 47(4): 1022-1031. https://doi.org/10.1109/TGRS.2008.2008908
  30. Rawlins, M.A, K.C. McDonald, S. Frolking, R.B. Lammers, M. Fahnestock, J.S. Kimball, and C.J. Vorosmarty, 2005. Remote Sensing of Pan-Arctic Snowpack Thaw Using the SeaWinds Scatterometer, Journal of Hydrology, 312: 294-311. https://doi.org/10.1016/j.jhydrol.2004.12.018
  31. Rignot, E. and J.B. Way, 1994. Monitoring freeze-thaw cycles along North-South Alaskan transects using ERS-1 SAR, Remote Sensing of Environment, 49(2): 131-137. https://doi.org/10.1016/0034-4257(94)90049-3
  32. Schaefer K, H. Lantuit, V.E. Romanovsky, E. Schuur, and R. Witt, 2014. The impact of the permafrost carbon feedback on global climate, Environmental Research Letters, 9(8): 085003. https://doi.org/10.1088/1748-9326/9/8/085003
  33. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley, 2013. Summary for policymakers Climate Change 2013: The Physical Science Basis, the Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge UK.
  34. Way, J.B., R. Zimmermann, E. Rignot, K.C. McDonald, and R. Oren, 1997. Winter and spring thaw as observed with imaging radar at BOREAS, Journal of Geophysical Research, 102: 29673-29684. https://doi.org/10.1029/96JD03878
  35. Wisemann, V., 2000. Monitoring of seasonal thawing in Siberia with ERS scatterometer data, IEEE Transactions on Geoscience and Remote Sensing, 38(4): 1804-1809. https://doi.org/10.1109/36.851764
  36. Yamaguchi, Y., Y. Yamamoto, H. Yamada, J. Yang, and W.-M. Boerner, 2008. Classification of terrain by implementing the correlation coefficient in the circular polarization basis using X-band POLSAR data, IEICE Transactions on Communications, 91(1): 297-301. https://doi.org/10.1093/ietcom/e91-b.1.297