• 제목/요약/키워드: circular plates

검색결과 256건 처리시간 0.028초

Numerical approaches for vibration response of annular and circular composite plates

  • Baltacioglu, Ali Kemal;Civalek, Omer
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.759-770
    • /
    • 2018
  • In the present investigation, by using the two numerical methods, free vibration analysis of laminated annular and annular sector plates have been studied. In order to obtain the main equations two different shell theories such as Love's shell theory and first-order shear deformation theory (FSDT) have been used for modeling. After obtaining the fundamental equations in briefly, the methods of harmonic differential quadrature (HDQ) and discrete singular convolution (DSC) are used to solve the equation of motion. Accuracy, convergence and reliability of the present HDQ and DSC methods were tested by comparing the existing results obtained by different methods in the literature. The effects of some geometric and material properties of the plates are investigated via these two methods. The advantages and accuracy of the HDQ and DSC methods have also been examined with different grid numbers and shell theory. Some results for laminated annular plates and laminated circular plates were also been supplied.

미분변환법을 이용한 축대칭 원판의 자유 진동 해석 (Free Vibration Analysis of Axisymmetrical Circular Plate by Using Differential Transformation Method)

  • 신영재;윤종학;지영철;김준년;페디나노
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.604-607
    • /
    • 2005
  • The free vibration of solid circular plates has been studied using the differential transformation method(DTM). The effects such as mass at edge and elastic restraints have been considered. In order to avoid the singularity problem at the solid circular center two regularity conditions were applied with respect to the number of circumferential nodal line. The non-dimensional natural frequencies of the general circular plates were obtained for various boundary conditions. The results obtained by this method were compared with previous works. DTM showed fast convergency, accuracy, efficiency and validity in solving vibration problem of general circular plates.

  • PDF

Elastic bending analysis of irregular-shaped plates

  • Sakiyama, T.;Huang, M.
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.289-302
    • /
    • 1999
  • An approximate method for analyzing the bending problems of irregular-shaped plates is proposed. In this paper irregular-shaped plates are such plates as plate with opening, circular plate, semi-circular plate, elliptic plate, triangular plate, skew plate, rhombic plate, trapezoidal plate or the other polygonal plates which are not uniform rectangular plates. It is shown that these irregular-shaped plates can be considered finally as a kind of rectangular plates with non-uniform thickness. An opening in a plate can be considered as an extremely thin part of the plate, and a non-rectangular plate can be translated into a circumscribed rectangular plate whose additional parts are extremely thin or thick according to the boundary conditions of the original plate. Therefore any irregular-shaped plate can be replaced by the equivalent rectangular plate with non-uniform thickness. For various types of irregular-shaped plates the convergency and accuracy of numerical solution by proposed method are investigated.

환형평판과 원판으로 구성된 유체용기의 고유진동 해석 (Free Vibration Analysis of Fluid Vessel with Annular and Circular Plates)

  • 정경훈;김종인;박진석
    • 한국소음진동공학회논문집
    • /
    • 제15권8호
    • /
    • pp.968-974
    • /
    • 2005
  • An analytical method for the hydroelastic vibration of a vessel composed of an upper annular plate and a lower circular plate is developed by the Rayleigh-Ritz method. The two plates are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

물과 접촉하는 동일한 두 원판의 동적 특성 (Dynamic Characteristics of Two Identical Circular Plates in Contact with Water)

  • 정경훈;김태완;김강수;박근배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.347-352
    • /
    • 1998
  • An analytical method for evaluating the free vibration of two circular plates coupled with water was developed by assuming the clamped boundary condition of the plates and an ideal fluid. The method was applied to analyze the transverse vibration modes, in-phase and out-of-phase, and the results were compared to those obtained by the finite element method (FEM) using a commercial ANSYS 5.2 software. It was found that the theoretical results can predict well the coupled natural frequencies for all in-phase modes with good accuracy. However, the analytical method shows some discrepancies compared with FEM analysis in predicting the coupled natural frequency of the out-of-phase modes, except when m = 0, the zero nodal circle. The analytical method also applied to evaluate the characteristics of the natural frequency with respect to the major parametric variation in mode numbers and distance between the circular plates.

  • PDF

갇힌 유체로 연성된 두 원판의 고유진동 해석 (Natural Vibration Analysis of Two Circular Plates Coupled with Bounded Fluid)

  • 정명조;정경훈
    • 한국소음진동공학회논문집
    • /
    • 제11권9호
    • /
    • pp.439-453
    • /
    • 2001
  • This study deals with the free vibration of two identical circular plates coupled with a bounded fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. In the theory, it is assumed that the ideal fluid in a rigid cylindrical container and the two plates are clamped along the plate edges. The proposed method is verified by the finite element analysis using commercial program with a good accuracy. Two transverse vibration modes, namely in-phase and out-of-phase, are observed alternately in the fluid-coupled system when the number of nodal circles increases for the fixed nodal diameter. The effect of gap between the plates on the fluid-coupled natural frequencies sis also investigated.

  • PDF

원판이 결합된 외팔 원통셸의 고유진동 특성 (Free Vibration Analysis of the Cantilevered Circular Cylindrical Shells Combined with Circular Plates at Axial Positions)

  • 임정식;이영신;손동성
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.331-345
    • /
    • 1997
  • A theoretical formulation for the analysis of free vibration of clamped-free cylindrical shells with plates attached at arbitrary axial position(s) was completed and it was programed to get the numerical results which yield natural frequencies and mode shape of the combined system of the plate and the shells. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. In order to validate the theory, modal test was also performed by impact test and FFT analysis. The results shows good agreement with those of ANSYS and test results in frequencies and mode shapes. The method developed herein is likely to be used for the analysis of the free vibration of the clamped-free circular cylindrical shells with any kinds of lids such as hollow circular plates, conical shells, spherical shells, or semi-spherical shells.

  • PDF

The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers

  • Arefi, M.
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1345-1362
    • /
    • 2015
  • The present paper deals with the free vibration analysis of the functionally graded solid and annular circular plates with two functionally graded piezoelectric layers at top and bottom subjected to an electric field. Classical plate theory (CPT) is used for description of the all deformation components based on a symmetric distribution. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness direction of the plate. The properties of plate core can vary from metal at bottom to ceramic at top. The effect of non homogeneous index of functionally graded and functionally graded piezoelectric sections can be considered on the results of the system. $1^{st}$ and $2^{nd}$ modes of natural frequencies of the system have been evaluated for both solid and annular circular plates, individually.

Using FEM and artificial networks to predict on elastic buckling load of perforated rectangular plates under linearly varying in-plane normal load

  • Sonmez, Mustafa;Aydin Komur, M.
    • Structural Engineering and Mechanics
    • /
    • 제34권2호
    • /
    • pp.159-174
    • /
    • 2010
  • Elastic buckling load of perforated steel plates is typically predicted using the finite element or conjugate load/displacement methods. In this paper an artificial neural network (ANN)-based formula is presented for the prediction of the elastic buckling load of rectangular plates having a circular cutout. By using this formula, the elastic buckling load of perforated plates can be calculated easily without setting up an ANN platform. In this study, the center of a circular cutout was chosen at different locations along the longitudinal x-axis of plates subjected to linearly varying loading. The results of the finite element method (FEM) produced by the commercial software package ANSYS are used to train and test the network. The accuracy of the proposed formula based on the trained ANN model is evaluated by comparing with the results of different researchers. The results show that the presented ANN-based formula is practical in predicting the elastic buckling load of perforated plates without the need of an ANN platform.

Eigenvalue analysis of axisymmetric circular Mindlin plates by pseudospectral method

  • Lee, Jinhee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권3호
    • /
    • pp.44-49
    • /
    • 2002
  • A study of free vibration of axisymmetric circular plates based on Mindlin theory using a pseudospectral method is presented. The analysis is based on Chebyshev polynomials that are widely used in the fluid mechanics research community. Clamped, simply supported and flee boundary conditions are considered, and numerical results are presented for various thickness-to-radius ratios.