• Title/Summary/Keyword: circular pattern

Search Result 498, Processing Time 0.026 seconds

Defect Detection Using Focused Lamb Waves Generated by Laser (집속형 레이저 유도초음파에 의한 결함검출)

  • Kim, Hong-Joon;Jung, Ji-Hong;Ha, Job;Jhang, Kyung-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.774-779
    • /
    • 2003
  • Arc-shaped line array slits have been used for the laser generation of focused Lamb waves. The spatially expanded Nd:YAG pulse laser was illuminated through the arc-shaped line array slit on the surface of a sample plate to generate the Lamb waves of the same pattern as the slit. Then the generated Lamb waves were focused at the point of which distance from the slit position is dependent on the curvature of slit arc. The proposed method showed better spatial resolution than the conventional linear array slit in the detection of laser machined linear defect and drill machined circular defect on aluminum plates of 1mm thickness.

  • PDF

Optimal Synthesis of Binary Neural Network using NETLA (NETLA를 이용한 이진 신경회로망의 최적합성)

  • 정종원;성상규;지석준;최우진;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.273-277
    • /
    • 2002
  • This paper describes an optimal synthesis method of binary neural network(BNN) for an approximation problem of a circular region and synthetic image having four class using a newly proposed learning algorithm. Our object is to minimize the number of connections and neurons in hidden layer by using a Newly Expanded and Truncated Learning Algorithm(NETLA) based on the multilayer BNN. The synthesis method in the NETLA is based on the extension principle of Expanded and Truncated Learning (ETL) learning algorithm using the multilayer perceptron and is based on Expanded Sum of Product (ESP) as one of the boolean expression techniques. The number of the required neurons in hidden layer can be reduced and fasted for learning pattern recognition.. The superiority of this NETLA to other algorithms was proved by simulation.

  • PDF

The Evaluation of Thin Pressure Vessel′s Internal Defects by Laser Shearography (레이저 전단 간섭계를 이용한 압력용기의 내부 결함 평가)

  • 장경영;장석원;현민관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.929-933
    • /
    • 2003
  • Internal defects of thin pressure vessel used in the power plants or the chemical plants may be created and grow due to corrosion or creep fatigue to reduce the strength and cause critical failure during operation. Therefore it is very important to detect this defect at the early stage. For this purpose, non-destructive, non-contact and highly sensitive method should be considered for on-line application. In this paper, a laser shearographic interferometer is applied to inspect circular defects and notch defects existed inside of thin pressure vessel under the presence of pressure up to 3 times of atmospheric pressure. The influences of the defect shape and size as well as the internal pressure to the characteristic pattern in the shearography fringe are investigated, and the quantitative evaluation of the defect size is tried. Also the experimental results are compared with the destructive test results to show the applicability of this method to the quantitative evaluation of internal defects in the thin pressure vessel.

  • PDF

A discrete particle model for reinforced concrete fracture analysis

  • Azevedo, N. Monteiro;Lemos, J.V.;Almeida, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.343-361
    • /
    • 2010
  • The Discrete Element Method adopting particles for the domain discretization has recently been adopted in fracture studies of non-homogeneous continuous media such as concrete and rock. A model is proposed in which the reinforcement is modelled by 1D rigid-spring discrete elements. The rigid bars interact with the rigid circular particles that simulate the concrete through contact interfaces. The DEM enhanced model with reinforcement capabilities is evaluated using three point bending and four point bending tests on reinforced concrete beams without stirrups. Under three point bending, the model is shown to reproduce the expected final crack pattern, the crack propagation and the load displacement diagram. Under four point bending, the model is shown to match the experimental ultimate load, the size effect and the crack propagation and localization.

An Analysis of Plate on the Elastic Half-Space by Using the Improved Subsection Method (개선된 소영역분할법을 이용한 탄성지반위에 놓인 평판의 해석)

  • Han, Choong-Mok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2005
  • A Plate on the elastic half-space may be generally be analyzed by the finite element method. However, there ate some difficulties to obtain the flexibility matrix of the foundation based on the Boussinesq's theory. In this study, an efficient numerical procedure which uses the analysis results of the vertical displacements due to the uniformly distributed loading in a circular area is presented. Some numerical examples represent better results than those of numerical integration technique or subsection method especially in the case of irregular mesh pattern.

Numerical Simulation of Heat Transfer Characteristics of Tube Banks with Non-conventional Arrangement (튜브뱅크 배열특성에 따른 전열특성변화 수치모사)

  • Jun, Yong-Du;Nam, Myong-Hwan;Koo, Byeong-Soo;Lee, Kum-Bae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1129-1134
    • /
    • 2009
  • A numerical study has been conducted to investigate the effect of tube arrangement on the heat transfer and the pressure loss for cross flow heat exchangers. By defining a transverse deviation factor, ${\varepsilon}_t=l_T/S_T$, the flow pattern and the heat transfer characteristics are compared for selected ${\varepsilon}_t$ values of 0.0(in-lined), 0.1, 0.2, 0.3, 0.4, 0.5(staggered) by using a commercial software. Computational domain includes 1 pitch in the transverse direction and 5 pitches in the flow direction with due periodic boundary conditions.

  • PDF

Numerical Study for Drag and Noise Reduction of Electrical Cable (송전선의 항력저감 및 소음에 관한 수치 연구)

  • Yoon, T.S.;Lee, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1716-1720
    • /
    • 2000
  • To develop the code of predicting flow-field and aeroacoustic noise by a electrical cable, a combined CFD-acoustic analogy approach is selected. The two-dimensional, unsteady, incompressible Reynolds-Averaged Navier-Stokes solver with a ${\kappa}{\omega}$, ${\kappa}{\omega}$ SST turbulence modeling is used to calculate the near-field around electrical cable. Near-field results are then coupled with two-dimensional Curle's integral formulation based upon Lighthill's acoustic analogy with an assumption of acoustic compactness. To validate this code, numerical results are compared with experimental data for a circular cylinder. The simulation shows an overprediction on acoustic amplitudes, but overally speaking, the spectrum pattern of sound pressure agrees well with experiment in an acceptable amount of error. In addition, various cross sections of a cable were selected and compared with each other in terms of drag and radiated noise.

  • PDF

A Study on the Effect of Stress Concentration Factor Determined by 3D-ESPI System on the Fatigue Life (3D-ESPI 시스템을 이용하여 결정된 응력집중계수가 피로수명에 미치는 영향에 관한 연구)

  • 김경수;심천식
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2002
  • Fatigue life estimation by the theoretical stress concentration factors are, in general, considerably different from test results. And in calculating stress concentration factor, it is very difficult to consider actual geometry and material property which are the notch shapes, imperfections or defects of materials such as porosities inclusions and casting defects, etc. Therefore, the paper deals with the experimental method to find out the more exact stress concentration factors by measuring the strain distributions on each specimen by 3D-ESPI(Electronic Speckle Pattern Interferometry) System. Then the fatigue lives are compared between theoretical calculations using stress concentration factors determined by 3D-ESPI system and fatigue test results.

Numerical Study on Laminar Flow over Three Side-by-Side Cylinders

  • Kang, Sangmo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1869-1879
    • /
    • 2004
  • The present study has numerically investigated two-dimensional flow over three circular cylinders in an equidistant side-by-side arrangement at a low Reynolds number. For the study, numerical simulations are performed, using the immersed boundary method, in the range of g* < 5 at Re= 100, where g* is the spacing between two adjacent cylinder surfaces divided by the cylinder diameter. Results show that the flow characteristics significantly depend on the gap spacing and a total of five kinds of wake patterns are observed over the range: modulation-synchronized (g* (equation omitted) 2), inphase-synchronized (g* (equation omitted) 1.5) , flip-flopping (0.3 < g* (equation omitted) 1.2) , deflected (g* (equation omitted) 0.3), and single bluff-body patterns (g* < 0.3). Moreover, the parallel and symmetric modes are also observed depending on g* in the regime of the flip-flopping pattern. The corresponding flow fields and statistics are presented to verify the observations.

The Characteristics of Two-Phase Flow Distribution in a Bottom Dividing Header

  • Im, Yang-Bin;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1195-1202
    • /
    • 2004
  • In this paper an experimental study was investigated for two-phase flow distribution in compact heat exchanger header. A test section was consisted of the horizontal bottom dividing header($\phi$: 5 mm, L: 80 mm) and 10 upward circular mini channels ($\phi$: 1.5 mm, L: 850 mm) using an acrylic tube. Three different types of tube intrusion depth were tested for the mass flux and inlet mass quality ranges of 50 - 200 kg/$m^2$s and 0.1 - 0.3, respectively. Air and water were used as the test fluids. The distribution of vapor and liquid is obtained by measurement of the total mass flow rate and the calculation of the quality. Two-phase flow pattern was observed, and pressure drop of each channel was measured. By adjusting the intrusion depth of each channel an uniform liquid flow distribution through the each channel was able to solve the mal-distribution problem.