• Title/Summary/Keyword: circular disk

Search Result 141, Processing Time 0.033 seconds

Spectral Element Modeling for Rotating Shafts (회전축에 대한 스펙트럴요소 모델링)

  • Lee, Jea-Sang;Yong, Suk-Jin;U-Sik, Lee
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.749-754
    • /
    • 2007
  • In this paper, the vibration of a rotating shaft with a thin rigid disk is considered. It is assumed that the shaft has uniform, circular cross-section. Based on the Timoshenko-beam theory, the transverse displacements and slops in two lateral directions, the axial displacement, and the torsional deformation are considered. The spectral element method is used for the vibration analysis of the rotating shaft with a thin rigid disk, which is modeled by two shaft elements and a thin rigid disk element.

  • PDF

Meridional Circulations in a Sliced Cylinder (기울어진 회전 원판에 의한 원통형 용기내의 자오면 유동의 크기에 관한 연구)

  • KIM Jae Won;LIM Hong Sick
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.52-57
    • /
    • 1996
  • Mixing is most important for developing an electric washer which transforms angular momentum from rotating solid wall to laundry clothes inside it. For magnification of this mixing effect, some inventions are introduced to washing machine system, i. e., washing plate, washing rod, and even for washing cap in a model of a Korean manufacture. However, the previous efforts show dissatisfaction up till now. In this paper, a triumph to enhance mixing effects to increase washing performance is presented and verified by numerical investigation. The present model to simulate a washing tub is the simple circular cylinder with two endwall disks which is completely filled with a viscous liquid. The present improvement is to change mounting position of a bottom disk of the model cylinder. Therefore, the aim of this work just proposes a new idea, which is numerically inspected, to a producer of washing machine, In detail, this invention is alternating the mounting position of a rotating bottom disk. Actually skewed pulsator is placed in steady of a flat disk, so the two endwall disks at top and bottom are not in parallel. The angle between an inclined bottom disk and the horizontal plane is fixed as 5 degree and physical domain to consider poses a sliced cylinder. Flow fields in both a right circular cylinder and the present improved model are fully depicted by numerical integration on a body fitted nonorthogonal regular uniform grid system. Numerical data to explain flow structure are plotted for understanding of the effects of the inclined disk. Also enhanced mixing effects by the inclined rotating disk are gauged by accurate numerical data used in this work.

  • PDF

On The Thermal Stresses due to Welding of a Penetraion Piece for a Watertight Bulkhead Plate(II) -Thermal Stresses in a Penetration Piece- (수밀격벽(水密隔壁)을 관통(貫通)하는 관(管)의 용접시공(熔接施工)으로 인(因)한 열응력해석(熱應力解析)(II) -Penetration piece에서의 열응력(熱應力)-)

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.1
    • /
    • pp.9-22
    • /
    • 1975
  • As a second step of a thermal stress analysis in a watertight bulkhead plate during welding of a spool type penetration piece, is idealized as a thin circular disk with a clamped boundary. The exact solution for the transient temperature distribution and associated quasi-static thermal stresses which arise in a circular disk subjected to an instantaneous point source of heat acting in its interior has been obtained. And the solutions have been extended to the case of moving source of heat with the aid of the Duhamel's superposition integral and the results finally derived have been compared with the other results from the typical cases. The solutions can be applied to the problem such as a welding of a penetration piece on the watertight bulkhead and also applicable to the problems which occur in cutting or welding.

  • PDF

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A.;Hamzawy, A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1271-1276
    • /
    • 2020
  • The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

A Study on Optimization of a Multi-Layered Metallic Disk Array Structure for Shaping of Flat-Topped Element Patterns (구형 빔 패턴 형성을 위한 다층 원형 도체 배열 구조의 최적화 연구)

  • 엄순영;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.985-995
    • /
    • 2003
  • In this paper, a study on optimization of three dimensional multi-layered metallic disk array structure(MDAS) excited by circular waveguides was performed to shape efficient flat-topped element patterns(FTEP) of ${\pm}$20$^{\circ}$ beam width. Each radiating element of the MDAS is composed of input, transition and radiation circular waveguides and finite metal disks stacked on radiation circular waveguide. It has an array structure of a hexagonal lattice appropriate for the conical beam scanning. The analytic algorithm for the MDAS was proposed and the code was also programmed using it. Optimal design parameters of the MDAS were determined through the optimal simulation process to obtain ${\pm}$20$^{\circ}$ FTEP. Also, bandwidth characteristics for FTEP and reflection coefficients of the MDAS were investigated and, as the results, it was shown that the MDAS could shape good FTEPs of ${\pm}$20$^{\circ}$ beam width in main planes at least within a 5.6 % frequency band.

Vibration Analysis of Wafer Cutting Machine and its Experimental Verification (웨이퍼 가공기의 진동 해석 및 실험적 검증)

  • 김명업;임경화;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.22-30
    • /
    • 1992
  • The free vibrations of the outer-clamped spinning annular disk which simulates a wafer cutting machine are investigated. The effects of the initial tension, the centrifugal force and outer-fixture extension caused by spinning on the vibration characteristics of the disk are considered. The modal parameters of the disk are calculated by using Galerkin's method as the rotating speed and initial tension are varied. Laboratory experiments are also performed with a rotating and stationary disk, and, it is found that experimental and simulation results are in good agreement.

The Experimental and Basic Study on Torsional Vibration of Horizontal Rotating Shaft using a Laser Measuring Equipment (레이저 계측기를 이용한 축의 비틀림 진동에 관한 실험적 기초 연구)

  • Park, I.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • In this study, the nose of cam in the automobile engine was modelled into circular disk to analyze the torsional vibration of the cam shaft. The distance between disks was fixed, but the diameter of disks was changed. The torsional vibration of the cam shaft was studied experimentally by the motion of the modelled disk with changing the disk diameter. And the sizes of the modelled disk were selected not to show the natural frequencies over all the experimental ranges. The torsional vibration meter used in this study has a laser system with non-contact measurement method, which can measure both torsional angular vibration velocity and torsional angular vibration displacement simultaneously. The Experimental analysis shows that the characteristics of the torsional vibration in the horizontal rotating shaft can be considerably affected by the arrangement of the modelled disks.

  • PDF

Numerical Visualization of Three-Dimensional Flow Past an Elliptic Disk using Vortex Filament Method (와사법을 이용한 타원판 후류의 전산 가시화)

  • Ahn Cheol-O;Lee Sang-Hwan
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.59-62
    • /
    • 2002
  • A study of three-dimensional unsteady incompressible flow past elliptic disk with aspect ratio 3 is presented. Numerical visualization using the vortex filament method was performed at Reynolds number of 20,000 on the basis of the minor diameter, the random walk method was used to calculate viscous diffusion effect. We suggest 3 stages about the wake development according to its structures, stability and motions and described the characteristics of each stages. The structure of the elliptic wake is more complicate and unstable than the wake behind a circular disk.

  • PDF

A Dielectric Measurement Technique of Thin Samples at Microwave Frequencies (마이크로파에서 얇은 유전체의 유전상수 및 유전손실의 측정방법에 대한 연구)

  • Kim, Jin-Hun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1582-1585
    • /
    • 1988
  • A cavity perturbation technique is employed to determine the dielectric property of thin samples. Substrates in microwave integrated circuits are fabricated in sheet form and are expected to have a dielectric constant less than 10 and a dielectric loss better than 10**-3. This research aimed to determine both dielectric constant and dielectric loss with good accuracy. The tecynique makes use of thin circular disk samples placed in a right circular cylindrical cavity. The accuracy of measurements is within \ulcorner% for dielectric constnat and 3x10**-4 for dielectric loss.

  • PDF