• Title/Summary/Keyword: circular caisson

Search Result 9, Processing Time 0.022 seconds

The Mechanical Behavior of Steel Circular Caisson by Horizontal Load (水平載荷에 따른 鋼製圓筒 케이슨의 力學的 擧動)

  • 장정욱
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.3
    • /
    • pp.141-150
    • /
    • 1998
  • Model tests were performed to examine the mechanical behavior of steel circular caisson by horizontal load. It was generally found that displacements and bottom pressure of the caisson model were increased rapidly at the local plastic load. The maximum displacement was measured at the loading point, whereas the less displacement was measured at the upper part of the caisson model. The bottom pressure was getting higher, as it was nearer the loading side. Furthermore, the increase ratio of the bottom pressure was higher as the load was increased.

  • PDF

Characteristics of Wave Forces by Installation of New Circular Caisson on the Back of Old Circular Caisson (기존 원형케이슨 후면에 신규 원형케이슨 설치에 따른 파력특성 분석)

  • Park, Min Su
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.395-402
    • /
    • 2019
  • In order to increse the stability of old caissons, the design and the construction are performed by installation of new caissons on the back of or on the front of old caissons. In this study, we use the eigenfunction expasnion method to analyze the characteristics of wave forces when new circular caissons are installed on the back of old caissons. The comparison of numerical results between eigenfunction expansion method and ANSYS AQWA is made and the wave force acting on each circular caisson is calculated by considering the wave-structure interaction effect.

Wave Structure Interaction by Installation of New Circular Caissons on Old Circular Caisson Breakwater (기존 원형케이슨방파제에 신규 원형케이슨 추가설치에 따른 파와 구조물간의 상호작용 영향 평가)

  • Park, Min Su
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.307-321
    • /
    • 2020
  • The design and the construction are carried out by installation of new caissons on the back or the front of old caissons to increase the stability of old caisson breakwater. In this study, we use the eigenfunction expansion method to analyze the effects of wave structure interaction when new circular caissons are installed on the back or the front of old caissons. The comparison of numerical results between present method and Williams and Li is made, and the wave force and the wave run-up acting on each circular caisson are calculated for various parameters by considering the wave structure interaction.

Reliability Analysis of Open Cell Caisson Breakwater Against Circular Slip Failure (무공케이슨 방파제의 원호활동에 대한 신뢰성 분석)

  • Kim, Sunghwan;Huh, Jungwon;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.193-204
    • /
    • 2019
  • Reliability analyses of sixteen domestic design cases of open cell caisson breakwaters against circular sliding failure were conducted in this study. For the reliability analyses, uncertainties of parameters of soils, mound, and concrete cap were assessed. Bishop simplified method was used to obtain load and resistance of open cell caisson breakwater for randomly generated open cell caisson breakwater. Sufficient number of Monte Carlo simulations were conducted for randomly generated open cell caisson breakwaters, and statistical analysis was conducted on loads and resistances collected from the large number of Monte Carlo simulations. Probability of failure produced from Monte Carlo simulation has a nonconvergence issue for very low probability of failure; therefore, First-Order Reliability Method (FORM) was conducted using the statistical characteristics of loads and resistances of open cell caisson breakwaters. In addition, effects of safety factor, uncertainties of load and resistance, and correlation between load and resistance on reliability of open cell caisson breakwaters against circular sliding failure were examined.

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

Characteristics of Wave by Additional Installation of Porous Dual Circular Caissons on the Existing Breakwater (기존 방파제에 투과성 이중 원형케이슨 추가설치에 따른 파랑 특성 분석)

  • Park, Min Su
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.396-410
    • /
    • 2020
  • The design and the construction are carried out by installation of new caissons on the back or the front of existing caissons to increase the stability of existing caisson breakwater. In this study, we use the eigenfunction expansion method to analyze the effects of wave structure interaction when new porous dual circular caissons are installed on the back or the front of existing breakwater. The porous dual circular caisson which consisting of a porous outer cylinder circumscribing an impermeable inner cylinder is one type of seawater exchanging breakwater. The comparison of numerical results between present method and Sankarbabu et al. is made, and the wave force and the wave run-up acting on each porous dual circular caisson are calculated for various parameters by considering the wave structure interaction.

Suction Penetration Review of Circular Steel Pipes by Field Test (현장 실험을 통한 원형강관 석션관입성 검토)

  • Kim, Hyun-Joo;Choi, Jin-O
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.35-43
    • /
    • 2020
  • Currently, cofferdams of circular cross section are widely applied as temporary facilities for the installation of bridge foundations in river/sea bridge construction in Korea. Existing caisson, sheet pile, and cell type cofferdam are widely used, but these methods take a lot of time and cost for installation and dismantling. In the case of the existing sheet pile construction method, attention is needed to secure internal and external stability because of the damage to the sheet pile due to ground penetration and difficulty in connecting element members. In this study, penetration design of circular steel pipes using suction pressure was performed on the soft ground of the west coast, and it was confirmed that penetration construction using suction pressure was possible through field tests. It was confirmed that applying the ground analysis results using the cone penetration test (CPT) to the design rather than the standard penetration test (N value) results more similar to the field test results. In addition, it was confirmed that local failure of the inside of the cofferdam was induced when a suction pressure higher than the upper limit suction pressure was applied in the silty sand.

Characteristics of Wave on Circular Breakwater of Double Array by Various Porous Coefficients among Circular Caissons (원형케이슨들간의 공극률 변화에 따른 2열 배치 원형방파제에 작용하는 파랑 특성 분석)

  • Park, Min Su
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.420-433
    • /
    • 2020
  • In order to increase the stability of existing breakwater, new caissons are installed on the back or the front of existing caissons. It is very important to evaluate wave force and wave run-up according to the change of porosity among caissons and the energy loss due to separation effects. In this study, we use the eigenfunction expansion method with Darcy's law, which describes the flow of a fluid through a porous plate, to analyze the characteristics of wave on circular breakwater of double array for various porous coefficients. To verify the numerical method, the comparison between present results and Sankarbabu et al. (2008) is made. The wave force and the wave run-up acting on each dual cylindrical caisson are calculated for various parameters by considering the energy loss and the change of porosity.