• Title/Summary/Keyword: circuit switching

Search Result 1,982, Processing Time 0.032 seconds

The considerations of a High Frequency DC-AC Inverter in a Short Range Wireless Power Transfer Applications (근거리 무선전력전송용 고주파 DC-AC 인버터 회로 고찰)

  • Park, Jae-Hyun;Kim, Chang-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.37-38
    • /
    • 2010
  • For MHz-class high frequency inverter in wireless power transfer applications, the voltage/current surges can be occurred in power stage when driving on the inverter. And also, the high-frequency oscillations can be produced at a high switching frequency due to the parasitic elements. The voltage and current stresses of the switching devices lead to the switching losses. The efficiency of the high frequency inverter will be reduced. And the inverter circuit with the sudden voltage and current fluctuations also generates the noise such as the EMI. Zero voltage, zero current switching technique can be used to reduce the switching loss and the noise. The high power density and high efficiency can be obtained. In this paper, the high-frequency inverter for short-range wireless power transfer applications was discussed. The feasible inverter circuit is analyzed in the circuit operating characteristics and the results are verified by the simulation.

  • PDF

Quasi Resonant DC Link Inverter with a Simple Auxiliary Circuit

  • Amini, Mohammad Reza;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 2011
  • In this paper, a new soft switching three phase inverter with a quasi-resonant dc-link is presented. The proposed inverter has a dc-link switch and an auxiliary switch. The inverter switches are turned on and off under zero voltage switching condition and all auxiliary circuit switches and diodes are also soft switched. The control utilizes PWM and the auxiliary switch does not require an isolated gate drive circuit. In this paper, the operation analysis and design considerations of the proposed soft switching inverter are discussed. The presented experimental results of a realized prototype confirm the theoretical analysis.

A new interleaved high step up converter with low voltage stress on the main switches

  • Tohidi, Babak;Delshad, Majid;Saghafi, Hadi
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.521-531
    • /
    • 2020
  • In this paper, a new interleaved high step-up converter with low voltage stress on the switches is proposed. In the proposed converter, soft switching is provided for all switches by just one auxiliary switch, which decreases the conduction loss of auxiliary circuit. Also, the auxiliary circuit is expanded on the converter with more input branches. In the converter all main switches operate under zero voltage switching condition and auxiliary switch operate under zero current switching condition. Because of the interleaved structure, the reliability of converter increases and input current ripples decreases. The clamp capacitor in the converter not only absorb the voltage spikes across the switch due to leakage inductance, but also improve voltage gain. The proposed converter is fully analyzed and to verify the theoretical analysis, a 100 W prototype was implemented. Also, to show the effectiveness of auxiliary circuit on conduction EMI, EMI of the proposed converter comprised with hard switching counterpart.

ZVS Flyback Converter Using a Auxiliary Circuit (보조회로를 이용한 영전압 스위칭 플라이백 컨버터)

  • 김태웅;강창수
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.5
    • /
    • pp.11-116
    • /
    • 2000
  • A topology decreased switching loss and voltage stress by zero voltage switching is presented in this paper. Generally, Switching mode converting productes voltage stress and power losses due to excessive voltage and current. which affect to performance of power supply and reduce overall efficiency of equipments. Virtually, In flyback converter, transient peak voltage and current at switcher are generated by parasitic elements. To solve these problems, present ZVS flyback converter topology applied a auxiliary circuit. Incorporation of auxiliary circuit into a conventional flyback topology serves to reduce power losses and to minimize switching voltage stress. Snubber capacitor in auxiliary circuit serves ZVS state by control voltage variable time at turn on and off of main switch, then reduces voltage stress and power losses. The proposed converter has lossless switching in variable load condition with wide range. A detailed analysis of the circuit is presented and the operation procedure is illustrated. A (50W 100kHz prototype) ZVS flyback converter using a auxiliary circuit is built which shows an efficiency improvement as compared to a conventional hard switching flyback converter.

  • PDF

Study to Application of Controlled Switching HVAC Circuit Breaker in KEPCO Grid (개폐제어형 초고압차단기의 해외적용사례와 한전계통 적용검토)

  • Oh, Seung-Ryle;Kwak, Joo-Sik;Jeong, Moon-Gyu;Han, Ki-Seon;Goo, Sun-Geun;Ju, Hyoung-Jun;Park, Min-Hae;Kim, Hyun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.433-434
    • /
    • 2015
  • Dictionary meaning of circuit-breaker is a mechanical switching device, capable of making, carrying and breaking currents under normal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnormal circuit conditions such as those of short circuit. and it had been recognized as being operated simultaneously. Controlled Switching System(CSS), which is technology for individual pole operation, are widely used to reduce transient phenomenon, for example switching surges, inrush current, for a all switching cases and nowadays it have become and economical solution for a switching place. The conventional solution to these problem is the use of pre-insertion resistors of $520{\Omega}$. However, it is recognised that the cost for products and maintenance are expensive and this apparatus makes more complex the circuit-breaker mechanism. Korea Electric Power Cooperation (KEPCO) has been study for relevant CCS technology since pilot application in substation in 2003 and plan to apply the actual power grid in 2017. This paper deals with the investigation of international CCS operation status and preview for application in KEPCO power grid.

  • PDF

Newton Method MPPT Control and Soft Switching Converter Simulation for Improving the Efficiency of PV System (태양광발전 시스템의 효율 개선을 위한 Newton Method MPPT제어 및 소프트 스위칭 컨버터 시뮬레이션)

  • Jang, In-Hyeok;Lee, Kang-Yeon;Choi, Youn-Ok;Cho, Geum-Bae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.246-252
    • /
    • 2011
  • In this paper proposes the soft-switching boost converter and MPPT control for improving the efficiency of PV system. The proposed converter designed H-bridge auxiliary resonant circuit. By this circuit, all of the switching devices perform the soft switching under the zero voltage and zero current condition. Therefore the periodic switching losses can be decreased at turn on, off. The soft switching boost converter designs for 1.5[kW] solar module of the power conversion. Thus, this soft switching boost converter is simulated by MATLAB simulation using Newton-Method algorithm. As a result, Proposed Soft Switching Converter compared to a typical boost converter switching loss was reduced about 61%. And the overall system efficiency was verified to increase about 3.3%.

Switching Surge Analysis of Underground Transmission Systems (지중송전시스템의 스위칭서지 해석)

  • Jung, Chae-Kyun;Lee, Jong-Beom;Jang, Sung-Hwan;Kang, Ji-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.481-483
    • /
    • 2002
  • In this paper, for continuously changed closing time of circuit breakers, switching overvoltage on 345kV underground transmission systems are variously analyzed using EMTP with statistical analysis method. And, switching overvoltage and closing surge occurred in conductors at sending and receiving end and metal sheath with variation of cable length are analyzed, and the reduction effects for switching overvoltage considered preinsertion resistance of circuit breakers are examined.

  • PDF

Single-Phase converter with partial resonant circuit (단상 컨버터의 부분공진 회로)

  • Lee, Hyun-Woo;Kwak, Dong-Kurl
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.129-131
    • /
    • 1993
  • Power conversion system of high performance requires high switching frequency power converter. In order to minimize commutation stress and switching losses, in this paper, AC-DC converter is embedded a partial resonant DC-Link circuit with the object of ZVCS(zero voltage switching and zero current switching). The partial resonant occurs just before converter switch operates. Thus, VA ratings of the elements and their dissipations due to effective series resistance (ESR) are very low. Some simulative results on computer are included to confirm the validity of the analytical results.

  • PDF

Current-fed Push-pull type ZVS high frequency oscillating power supply (전류공급 Push-pull형 ZVS 고주파 발진전원장치)

  • 송진화;서철식;이경호;김종해;노채균
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.189-194
    • /
    • 1999
  • This paper proposes a current-fed type high frequency inverter using a soft switching technology Zero-Voltage-Switching to reduce turn on and off loss at the switching. The analysis of the proposed circuit was described by using normalized parameter and operating characteristics have been evaluated as to switching frequency and parameters. The theoretical results are in good agreement with the experimental ones. In the future the proposed circuit is considered to be useful for induction heating applications.

  • PDF

Characteristic of SEPP-LCC Type High Frequency Resonant Inverter using ZVS (ZVS를 이용한 SEPP-LCC형 고주파 공진인버터의 특성해석에 관한 연구)

  • 서철식;김종해;김동희;노채균;이달해
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.14-19
    • /
    • 1998
  • This paper has described about principle and form of proposed circuit made use of soft switching technology ZVS(Zero-Voltage-Switching) to reduce turn on and off loss at switching. also, the analysis of the proposed circuit has described by using normalized parameter and operating characteristics have been evaluated as to switching frequency and parameters. In addition, this paper proves the propriety of theoretical analysis in terms of the experiments.

  • PDF