• Title/Summary/Keyword: circuit switching

Search Result 1,982, Processing Time 0.027 seconds

Study on the control method and operation characteristics of BUCK-BOOST Converter for ZVS and ZCS (ZVS과 ZCS을 이용한 BUCK-BOOST콘버어터의 제어방식과 동작특성에 관한 연구)

  • Kim, Hyun-Soo;Park, Sung-Jun;Byun, Young-Bok;Kwon, Soon-Jae;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.195-197
    • /
    • 1995
  • In this paper, for a constant switching frequency, the configuration and the control strategy of the resonant buck-boost type converter are proposed by the combination of zero voltage switching(ZVS) and zero current switching(ZCS) with PWM method. Also, in the configuration of power control circuit, transformer is not used in the viewpoint of economy. And the circuit has fewer power switching elements than a general resonant power converter, simulation results and experiments make show the advantages mentioned.

  • PDF

A Study on the Smoke Removal Characteristics of the ESP Adopting Resonant dc-dc Converter

  • Kim, Su-Weon;Park, Jong-Woong;Joung, Jong-Han;Chung, Hyun-Ju;Choi, Jin-Young;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.193-200
    • /
    • 2004
  • In this study, we propose a small high voltage power supply, which uses a half-bridge ZCS resonant and Cockroft-Walton circuit as its ESP (Electrostatic Precipitator). This power supply transfers energy from the ZCS resonant inverter to the step-up transformer. The transformer secondary is then applied to the Cockroft-Walton circuit for generating high voltage as a discharging source of electrodes. It is highly efficient because its amount of switching losses are reduced by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step up transformer secondary combined with the Cockroft-Walton circuit. Using this power supply, experiments have been carried out as a function of the switching frequency and duty ratio in order to investigate the smoke removal characteristics. From these results, the best operational condition is obtained at the switching frequency of 9 kHz and the duty ratio of 50% in this ESP.

RZ/NRZ Mixture mode Data Transmission to reduce Signal Transition in the Asynchronous Circuits (비동기 회로의 신호천이 감소를 위한 RZ/NRZ 혼합 2선식 데이터 전송 방식)

  • 이원철;이제훈;조경록
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.57-64
    • /
    • 2004
  • In this paper, we propose a RZ/HRZ mixture data transmission method for the asynchronous circuit design to reduce Power consumption. The dual-rail data with Rf decoding scheme is used to design asynchronous circuit, and it is easy to get a completion signal of the data validity from the native data as contrasted with sin91e-rail. However, the dual-rail scheme suffers from large chip area and increasing of Power consumption from all signals by the switching of the return-to-zero. We need to diminish number of circuit switching. The proposed RZ/HRZ data transmission reduces a switching activity to about 50% and it shows 23% lower power consumption than the conventional dual-rail coding with RZ's.

Voltage-Fed Push-Pull PWM Converter Featuring Wide ZVS Range and Low Circulating Loss with Simple Auxiliary Circuit

  • Ye, Manyuan;Song, Pinggang;Li, Song;Xiao, Yunhuang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.965-974
    • /
    • 2018
  • A new zero-voltage-switching (ZVS) push-pull pulse-width modulation (PWM) converter is proposed in this paper. The wide ZVS condition for all of the switches is obtained by utilizing the energy stored in the output inductor and magnetizing inductance. As a result, the switching losses can be dramatically reduced. A simple auxiliary circuit including two small diodes and one capacitor is added at the secondary side of a high frequency (HF) transformer to reset the primary current during the circulating stage and to clamp the voltage spike across the rectifier diodes, which enables the use of low-voltage and low-cost diodes to reduce the conducting and reverse recovery losses. In addition, there are no active devices or resistors in the auxiliary circuit, which can be realized easily. A detailed steady operation analysis, characteristics, design considerations, experimental results and a loss breakdown are presented for the proposed converter. A 500 W prototype has been constructed to verify the effectiveness of the proposed concept.

Characteristics Analysis of ZVS-HB Type High Frequency Resonant Inverter According to the Variable Capacitance of the DC Voltage Source Separation Capacitor (직류 전원 분할용 커패시터의 용량 변화에 따른 ZVS-HB형 고주파 공진 인버터의 특성해석)

  • Mun, Chang-Su;Kim, Jong-Hae;Kim, Dong-Hui;O, Seung-Hun;Sim, Gwang-Yeol;Min, Byeong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.352-357
    • /
    • 2000
  • This paper presents about an example of circuit design and characteristics of inverter according to the variable capacitance of the DC voltage source separation capacitor used in ZVS-HB type high frequency resonant inverter. The soft switching technology known as ZVS is used to reduce turn off loss at switching. In the event the capacitance of the DC voltage source separation capacitor is varied, the analysis of inverter circuit has generally described by using normalized parameter and operating characteristics have been evaluated in terms of switching frequency and parameters. According to the calculated characteristics value, a method of the circuit designs and operating characteristic of the inverter is also presented in this paper. In addition, this paper proves the validity of theoretical analysis through the experiment. This proposed inverter shows that it can be practically used in future as power source system for the lighting equipment of discharge lamp, DC-DC converter etc.

  • PDF

Interleaved ZVS DC/DC Converter with Balanced Input Capacitor Voltages for High-voltage Applications

  • Lin, Bor-Ren;Chiang, Huann-Keng;Wang, Shang-Lun
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.661-670
    • /
    • 2014
  • A new DC/DC converter with zero voltage switching is proposed for applications with high input voltage and high load current. The proposed converter has two circuit modules that share load current and power rating. Interleaved pulse-width modulation (PWM) is adopted to generate switch control signals. Thus, ripple currents are reduced at the input and output sides. For high-voltage applications, each circuit module includes two half-bridge legs that are connected in series to reduce switch voltage rating to $V_{in}/2$. These legs are controlled with the use of asymmetric PWM. To reduce the current rating of rectifier diodes and share load current for high-load-current applications, two center-tapped rectifiers are adopted in each circuit module. The primary windings of two transformers are connected in series at the high voltage side to balance output inductor currents. Two series capacitors are adopted at the AC terminals of the two half-bridge legs to balance the two input capacitor voltages. The resonant behavior of the inductance and capacitance at the transition interval enable MOSFETs to be switched on under zero voltage switching. The circuit configuration, system characteristics, and design are discussed in detail. Experiments based on a laboratory prototype are conducted to verify the effectiveness of the proposed converter.

Switching Component for Broadband Switching Network (광대역 스위칭 네트워크용 스위칭 소자 구조)

  • Kim, D.H.;Seo, W.S.;Sim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.978-980
    • /
    • 1987
  • This paper presents a scheme of $16{\times}16$ VLSI crosspoint chip as a key Component in future broadband switching network operating at bit rates UP to 140Mbit/s using space division switching technique. First, functional requirements of the chip are investigated in terms of a large switching unit. Then, a regeneration circuit to provide reshaping of previsiously switched signals is presented.

  • PDF

A Study on the Design of a Beta Ray Sensor Reducing Digital Switching Noise (디지털 스위칭 노이즈를 감소시킨 베타선 센서 설계)

  • Kim, Young-Hee;Jin, Hong-Zhou;Cha, Jin-Sol;Hwang, Chang-Yoon;Lee, Dong-Hyeon;Salman, R.M.;Park, Kyung-Hwan;Kim, Jong-Bum;Ha, Pan-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.403-411
    • /
    • 2020
  • Since the analog circuit of the beta ray sensor circuit for the true random number generator and the power and ground line used in the comparator circuit are shared with each other, the power generated by the digital switching of the comparator circuit and the voltage drop at the ground line was the cause of the decreasein the output signal voltage drop at the analog circuit including CSA (Charge Sensitive Amplifier). Therefore, in this paper, the output signal voltage of the analog circuit including the CSAcircuit is reduced by separating the power and ground line used in the comparator circuit, which is the source of digital switching noise, from the power and ground line of the analog circuit. In addition, in the voltage-to-voltage converter circuit that converts VREF (=1.195V) voltage to VREF_VCOM and VREF_VTHR voltage, there was a problem that the VREF_VCOM and VREF_VTHR voltages decrease because the driving current flowing through each current mirror varies due to channel length modulation effect at a high voltage VDD of 5.5V when the drain voltage of the PMOS current mirror is different when driving the IREF through the PMOS current mirror. Therefore, in this paper, since the PMOS diode is added to the PMOS current mirror of the voltage-to-voltage converter circuit, the voltages of VREF_VCOM and VREF_VTHR do not go down at a high voltage of 5.5V.

A Novel Multi-Level Type Energy Recovery Sustaining Driver for AC Plasma Display Panel (새로운 AC PDP용 멀티레벨 에너지 회수회로)

  • Hong, Soon-Chang;Jung, Woo-Chong;Kang, Kyoung-Woo;Yoo, Jong-Gul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.71-78
    • /
    • 2005
  • This paper proposes a novel multi-level energy recovery sustaining driver for AC PDP(Plasma Display Panel), which solves the problems of the conventional multi-level sustaining driver. While the conventional circuit improves the voltage md current stress of the switching elements in Weber circuit not only there are parasitic resonant currents between resonant inductors and parasitic capacitance and hard switching, but also the changing period between 0 and sustain voltage is too long. Comparing the proposed circuit with the conventional circuit, the number of components are reduced and the parasitic resonant currents in resonant inductors are eliminated Moreover the hard switching problem is solved by using CIM(Current Injection Method) and the operating frequency will be high as much as possible by removing Vs/2 sustain period. And the circuit operations of the proposed circuit are analyzed for each mode and the validity is verified by the simulations using PSpice program.

Character of Induction Heating ZCS PWM SEPP High Frequency Inverter (유도가열용 ZCS PWM SEPP 고주파 인버터의 특성)

  • Mun, Sang-Pil;Kim, Chil-Ryong;Kwak, Dong-Kurl;Kim, Choon-Sam;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.133-135
    • /
    • 2007
  • This research presented the new zero-current switching pulse width modulation SEPP(Single Ended Push-Pull)high frequency inverter for solving the problem of the zero-current SEPP high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the zero-current switching pulse width modulation SEPP high frequency inverter. The inverter circuit which is attempted by on-off operation of a switch has the reduction effect of the power loss due to a soft switching and a high frequency switching. And it confirmed that the power regulation is possible continuously from 0.25[kW] until 2.84[kW] in the case the duty rate(D) changes from 0.08 to 0.3 under zero-current switching operating by a dissymmetry pulse width modulating control and the power conversion efficiency comes true the efficiency of 95[%]. Due to the result above, the ZCS PWM SEPP high frequency inverter will be effective as sources of an induction heating apparatus.

  • PDF