• Title/Summary/Keyword: circuit protection

Search Result 633, Processing Time 0.029 seconds

Over-current Protection Circuit Considering the Rated Power of Output Transistors (출력 트랜지스터의 정격전력을 고려한 과전류 보호회로)

  • 곽태우;김남인;최배근;이광찬;홍영욱;조규형
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2859-2862
    • /
    • 2003
  • 본 논문에서는 과전류로부터 보호해야 할 트랜지스터의 정격전력을 고려해 protection level 을 결정하는 과 전류 보호회로를 제안하였다. 기존의 과전류 보호회로는 과부하시 출력 트랜지스터 양단 전압과는 무관하게 단순히 전류의 크기만을 감지해 보호회로를 동작시키기 때문에 출력 트랜지스터의 정격전력을 고려하지 않고 동작을 한다. 하지만 제안된 회로는 출력전압과 출력전류의 크기를 모두 감지해 protection 여부를 결정하기 때문에 protection 시 출력 트랜지스터에서의 소모전력이 거의 일정하도록 유지시켜준다. Protection level 설정에 있어서 기존 방식과 다른 점을 먼저 살펴보고, 실제 오디오 증폭기의 보호회로로 사용된 회로의 동작원리를 설명하겠다. 아울러 실험을 통해 검증된 과전류 보호회로의 동작 결과를 살펴보겠다.

  • PDF

A Special Protection Scheme Against a Local Low-Voltage Problem and Zone 3 Protection in the KEPCO System

  • Yun, Ki-Seob;Lee, Byong-Jun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.294-299
    • /
    • 2007
  • This paper presents a special protection scheme, which was established in the KEPCO (Korea Electric Power Corporation) system, against a critically low voltage profile in a part of the system after a double-circuit tower outage. Without establishing the scheme, the outage triggers the operation of a zone 3 relay and trips the component. This sequence of events possibly leads to a blackout of the local system. The scheme consists of an inter-substation communication network using PITR (Protective Integrated Transmitter and Receiver) for acquisition of the substations' data, and under-voltage load shedding devices. This paper describes the procedure for determining the load shedding in the scheme and the experiences of the implementation.

A Protection Algorithm Discriminating Between Internal and External Faults for Wind Farms (풍력발전단지 보호를 위한 내외부 고장 판별 알고리즘)

  • Kwon, Young-Jin;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.854-859
    • /
    • 2007
  • A wind farm consists of many wind generator(WG)s therefore, it is generally a complex power system. A wind farm as a distributed generation(DG) affects utility power system. If a conventional protection schemes are applied, it is difficult to detect faults correctly and the schemes can't provide proper coordination in some cases. This paper presents a protection algorithm for a wind farm which consists of a looped collection circuit. Because the proposed algorithm can distinguish between an internal fault and an external fault in a wind farm, The proposed algorithm can disconnect the faulted section in a wind farm. This algorithm is based on an overcurrent protection technique with the change of the ratio of the output current of a generator to the current of the looped line connected to each generator to collect the each generator's power. In addition, operating time of the algorithm is shortened by using the voltage drop at a generator collection point. The performance of the proposed algorithm was verified under various fault conditions using PSCAD/EMTDC simulations.

The Design of SCR-based Whole-Chip ESD Protection with Dual-Direction and High Holding Voltage (양 방향성과 높은 홀딩전압을 갖는 사이리스터 기반 Whole-Chip ESD 보호회로)

  • Song, Bo-Bae;Han, Jung-Woo;Nam, Jong-Ho;Choi, Yong-Nam;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.378-384
    • /
    • 2013
  • We have investigated the electrical characteristics of SCR(Silicon Controlled Rectifier)-based ESD power clamp circuit with high holding voltage and dual-directional ESD protection cells for a whole-chip ESD protection. The measurement results indicate that the dimension of n/p-well and p-drift has a great effect on holding voltage (2V-5V). Also A dual-directional ESD protection circuit is designed for I/O ESD protection application. The trigger voltage and the holding voltage are measured to 5V and 3V respectively. In comparison with typical ESD protection schemes for whole-chip ESD protection, this ESD protection device can provide an effective protection for ICs against ESD pulses in the two opposite directions, so this design scheme for whole-chip ESD protection can be discharged in ESD-stress mode (PD, ND, PS, NS) as well as VDD-VSS mode. Finally, a whole-chip ESD protection can be applied to 2.5~3.3V VDD applications. The robustness of the novel ESD protection cells are measured to HBM 8kV and MM 400V.

Micro IGBT Device Modeling and Circuit Simulation (미시적인 IGBT 소자 모델링과 회로동작 시뮬레이션)

  • Seo, Young-Soo;Baek, Dong-Hyun;Lim, Young-Bae;Kim, Young-Chun;Cho, Moon-Taek;Seo, Soo-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.562-564
    • /
    • 1994
  • IGBT devices have the best features of both power MOSFETs and power bipolar transistors, i. e., efficient voltage gate drive requirements and high current density capability. The interaction of the IGBT with the load circuit can be described using the device model and the state equation of the load circuit. The protection circuit requirements are unique for the IGBT and can be examined using the model.

  • PDF

Surge Immunity Performance Enhancement Techniques on Battery Management System (전지관리장치(BMS)의 서지내성 성능향상 기법)

  • Kim, Young-Sung;Rim, Seong-Jeong;Seo, Woohyun;Jung, Jeong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.196-200
    • /
    • 2015
  • The switching noise in the power electronics of the power conversion equipment (Power Conditioning System) for large energy storage devices are generated. Since the burst-level transient noise from being generated in the power system at a higher power change process influences the control circuit of the low voltage driver circuit. Noise may cause the malfunction of the control device even if no dielectric breakdown leads to a control circuit. To overcome this, this paper proposes the installation of an additional nano-surge protection device on the power supply DC output circuit of the battery management unit.

The Improvement of NGR for Power Transformer Open Circuit Protection (전력용변압기 단선 보호용 NGR 성능 개선)

  • Kang, Y.W.;Shim, E.B.;Kwak, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.83-88
    • /
    • 2004
  • As the electric system is getting larger to meet the increasing demand for electric power, the rating of power apparatus is becoming inevitably higher in its working voltage and larger in its capacity. According to KEPCO reports, power transformers in the KEPCO system have undergone troubles such as winding short insulation breakdowns every year since 1981. the cause of this troubles were high one line grounding fault currents in KEPCO systems that had direct grounding systems. KEPCO has installed the NGR(neutral grounding reactor) to lower this fault current and reduced winding short insulation breakdowns in power transformers. But when a circuit breaker opened a no load bus, some trips of circuit breakers for protecting transformer have occurred by mal-operation of 59GT(overvoltage ground relay) that detect disconnection of NGR. Therefore, in this paper, we analyzed the cause and examined the effect of time delav circuit to prevent wrong operation of 59GT.

  • PDF

THE STUDY 01 CHARACTERISTICS OF INRUSH CURRENTS FOR HIGH POWER SHORT-CIRCUIT TESTING TRANSFORMER (단락시험용 대전류변압기 돌입전류특성에 관한 연구)

  • Roh, Chang-Il;La, Dae-Ryeol;Kim, Sun-Koo;Jung, Heung-Soo;Kim, Won-Man;Lee, Dong-Jun;Kim, Sun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.695-696
    • /
    • 2006
  • The inrush current of transformer cause saturation effects of recovery voltage for short-circuit power testing. the inrush current depends on the residual flux of the transformer core. when inrush current occurs, it is contains a d.c. component and the high harmonic content of the current are of importance to relay protection of testing circuit. this paper describes of decrease method of inrush current for high power short-circuit testing transformer.

  • PDF

A Study on the application of TVS for snubber (스너버 회로를 위한 TVS 소자의 활용 연구)

  • Lee Wan-Yun;Chung Gyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.227-230
    • /
    • 2002
  • The switching device in an inductive circuit is stressed by the over-voltage at the turn-off time. Thus if the peak value of the over-voltage is not properly limited, the switching device may be broken. Therefore, the snubber circuit should be added to protect the switching device from the over-voltage. The circuit designer must be familiar with the design of the snubber This paper tests the possibility that TVS instead of the conventional snubber can be applied to the protection circuit of the switching device without using the complicated design equations, and shows that the rating of TVS can be easily selected by considering only several parameters of TVS. The experimental results show the reduced switching voltage of the switching device at the turn-off time.

  • PDF