• Title/Summary/Keyword: circuit power

Search Result 6,860, Processing Time 0.031 seconds

A study on the improvement of Drive circuit in the Power Line Communication (전력선 통신환경에서의 구동회로 개선에 관한 연구)

  • Lim, Seung-Ha
    • 전자공학회논문지 IE
    • /
    • v.44 no.4
    • /
    • pp.30-34
    • /
    • 2007
  • The Channel environment is poor in the power line communication because power line proposed power supply use a communication medium. In this paper, we designed gate drive circuit used coupler reducing the signal diminution for the good communication. We analyzed receiving and transmitting operation of the coupler and designed the drive circuit with the suitable impedance. As a result, we improved the environment of impedance variation due to the inter reaction of many electron products. So, to improve BER(45%) enabled us to communicate smoothly in power line communication.

A Low-Power CMOS Current Reference Circuit (저전력 CMOS 기준전류 발생회로)

  • 김유환;권덕기;이종렬;유종근
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.89-92
    • /
    • 2001
  • In this paper, a simple low-power CMOS current reference circuit is proposed. The reference circuit includes parasitic pnp BJTs and resistors. Temperature compensation is made by adding a current component proportional to a thermal voltage to a current component proportional to a base-to-emitter voltage. The designed circuit has been simulated using a 0.25${\mu}{\textrm}{m}$ n-well CMOS process parameters. The simulation results show that the reference current is 34.96$mutextrm{A}$$\pm$0.04$mutextrm{A}$ in the temperature range of -2$0^{\circ}C$ to 12$0^{\circ}C$ The reference current varies less than 0.6% when the power supply voltage changes from 2.5V to 3.5V For $V_{DD=5V}$ and T=3$0^{\circ}C$ the power consumption is 520㎼ during normal operation but reduces to 0.l㎻ during power-down mode.

  • PDF

Insulation Design Standards for Protection of Power System against Lightning in Korea Electric Power Corporation (낙뢰로부터 전력설비 보호를 위한 한전의 절연설계 기준)

  • Woo, J.W.;Moon, J.D.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.555-560
    • /
    • 2006
  • As it has been reported that more than 60% of transmission line faults occurs due to lightning strokes, lighting is one of concerned issues in electric power utility company. Most of transmission line is double circuit in Korea. Double circuit outages account for 33.7 percent of total lightning faults from 1996 to 2004. Even though transmission fault might be cleared shortly by protective system, it could deteriorate the power quality accompanied with sag or flicker. Moreover, double circuit fault may lead to more aggravated situation, for instance, blackout. To Protect transmission lines from lightning stroke, reduction of tower footing resistance, multiple ground wires and unbalanced insulation in double circuit lines have been adopted. In this paper, we would like to introduce insulation design standards for lightning protection of Korea Electric Power Corporation.

A study on the characteristics of power factor correction circuits with input active boost converter (입력 능동 부스트 컨버터를 고려한 역률개선회로의 특성분석)

  • Jang, Jun-Young;Lee, Kwan-Yong;Kim, Cherl-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.270-272
    • /
    • 2003
  • Switching power supplies are widely used in many industrial fields. Power factor correction(PFC) circuits have tendency to be applied in new power supply designs. The input active power factor correction(APFC) circuits can be implemented using either the two-stage approach or the single-stage approach. The single-stage PFC circuit has advantage to reduce the number of components by eliminating a need for the PFC switch and control circuit. However, unlike in the two-stage approach, the do voltage on the energy storage capacitor in a single-stage PFC circuit is not well regulated. As a result. in universal line application($90{\sim}265Vac$), the storage capacitor voltage varies with the load and line variation. In this paper, the performance of output voltage regulation and transient response are clarified here. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results of 2 [kW] prototype converter.

  • PDF

A Study on the Optimal Power Flow with Suppressing the Short Circuit Capacity in Power Systems (전력계통의 고장용량 억제를 위한 최적조류계산 연구)

  • Lee, Gwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.575-580
    • /
    • 2000
  • Switching of the transmission lines(T/L) is one of the ways for suppressing the short circuit capacity. This paper presents the extended optimal power flow(OPF) to the problem of selecting the T/Ls to be open. The constraints of the short circuit currents within limits are added to the inequalities of OPF. Also, the overload on the other lines due to switching of T/Ls is avoided by the linearized inequalities. The number of the open lines can be minimized by incorporating into the objective function of OPF in order to maintain reliability. The method of an effective calculation of the extended OPF is also proposed in this paper, which makes the two parts decoupled. The one concerning the generation dispatch is solved in the first place by the conventional method. Secondly, the other concerning the line-switching is optimized by the proposed formulation.

  • PDF

Firing Circuit analysis of Static Frequency Converter (SFC 시스템의 점호회로 분석)

  • Ryu, Ho-Seon;Shin, Mahn-Su;Kim, Chan-Ki;Lee, Joo-Hyun;Lim, Ick-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1220-1222
    • /
    • 2003
  • An analysis of thyristor firing and protection circuit applied to SFC(static Frequency Converter) is presented. This consists of firing circuit when thyristor is connected in series, one of overvoltage protection and monitor databack circuit of thyristor states etc. Also, each characteristic of foreign products was studied in this paper.

  • PDF

Reduction of DC-Link Capacitance in Single-Phase Non-Isolated Onboard Battery Chargers

  • Nguyen, Hoang Vu;Lee, Sangmin;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.394-402
    • /
    • 2019
  • This paper proposes a single-phase non-isolated onboard battery charger (OBC) for electric vehicles (EVs) that only uses small film capacitors at the DC-link of the AC-DC converter. In the proposed charger, an isolated DC-DC converter for low-voltage batteries is used as an active power decoupling (APD) circuit to absorb the ripple power when a high-voltage (HV) battery is charged. As a result, the DC-link capacitance in the AC-DC converter of the HV charging circuit can be significantly reduced without requiring any additional devices. In addition, some of the components of the proposed circuit are shared in common for the different operating modes among the AC-DC converter, LV charging circuit and active power filter. Therefore, the cost and volume of the onboard battery charger can be reduced. The effectiveness of the proposed topology has been verified by the simulation and experimental results.

The Improvement of Junction Box Within Photovoltaic Power System

  • Sun, Ki-Ju;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.359-362
    • /
    • 2016
  • In the PV (Photovoltaic) power system, a junction box collects the DC voltage generated from the PV module and transfers it to the PCS (power conditioning system). The junction box prevents damage caused by the voltage difference between the serially connected PV modules and provides convenience while repairing or inspecting the PV array. In addition, the junction box uses the diode to protect modules from the inverse current when the PV power system and electric power system are connected for use. However, by using the reverse blocking diode, heat is generated within the junction box while generating electric power, which decreases the generating efficiency, and causes short circuit and electric leakage. In this research, based on the purpose of improving the performance of the PV module by decreasing the heat generation within the junction box, a junction box with a built-in bypass circuit was designed/manufactured so that a certain capacity of current generated from the PV module does not run through the reverse blocking diode. The manufactured junction box was used to compare the electric power and heating power generated when the circuit was in the bypass/non-bypass modes. It was confirmed that the electric power loss and heat generation indicated a decrease when the circuit was in the bypass mode.

High Power Buck-boost DC-DC Converter of Soft Switching for Photovoltaic Power Generation (태양광 발전을 위한 대용량 소프트 스위칭 승강압 DC-DC 컨버터)

  • 김영철;김재준;이종근;전중함;곽동걸;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.117-120
    • /
    • 1996
  • Power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. In this paper, the authors propose a DC-DC boost converter of high power by partial resonant switch method (PRSM). The switching devices in a proposed circuit are operated with soft switching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. Also the circuit has a merit which is taken to increase of efficiency, as it makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber in conventional circuit. The result is that the switching loss is very low and the efficiency of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Soft-Switching PWM Boost Chopper-Fed DC-DC Power Converter with Load Side Auxiliary Passive Resonant Snubber

  • Nakamura, Mantaro;Ogura, Koki;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.161-168
    • /
    • 2004
  • This paper presents a new circuit topology of high-frequency soft switching commutation boost type PWM chopper-fed DC-DC power converter with a loadside auxiliary passive resonant snubber. In the proposed boost type chopper-fed DC-DC power converter circuit operating under a principle of ZCS turn-on and ZVS turn-off commutation, the capacitor and inductor in the auxiliary passive resonant circuit works as the lossless resonant snubber. In addition to this, the voltage and current peak stresses of the power semiconductor devices as well as their di/dt or dv/dt dynamic stress can be effectively reduced by the single passive resonant snubber treated here. Moreover, it is proved that chopper-fed DC-DC power converter circuit topology with an auxiliary passive resonant snubber could solve some problems on the conventional boost type hard switching PWM chopper-fed DC-DC power converter. The simulation results of this converter are illustrated and discussed as compared with the experimental ones. The feasible effectiveness of this soft witching DC-DC power converter with a single passive resonant snubber is verified by the 5kW, 20kHz experimental breadboard set up to be built and tested for new energy utilization such as solar photovoltaic generators and fuel sell generators.