• Title/Summary/Keyword: circuit modeling

Search Result 821, Processing Time 0.03 seconds

Investigations on the Optimal Support Vector Machine Classifiers for Predicting Design Feasibility in Analog Circuit Optimization

  • Lee, Jiho;Kim, Jaeha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.437-444
    • /
    • 2015
  • In simulation-based circuit optimization, many simulation runs may be wasted while evaluating infeasible designs, i.e. the designs that do not meet the constraints. To avoid such a waste, this paper investigates the use of support vector machine (SVM) classifiers in predicting the design's feasibility prior to simulation and the optimal selection of the SVM parameters, namely, the Gaussian kernel shape parameter ${\gamma}$ and the misclassification penalty parameter C. These parameters affect the complexity as well as the accuracy of the model that SVM represents. For instance, the higher ${\gamma}$ is good for detailed modeling and the higher C is good for rejecting noise in the training set. However, our empirical study shows that a low ${\gamma}$ value is preferable due to the high spatial correlation among the circuit design candidates while C has negligible impacts due to the smooth and clean constraint boundaries of most circuit designs. The experimental results with an LC-tank oscillator example show that an optimal selection of these parameters can improve the prediction accuracy from 80 to 98% and model complexity by $10{\times}$.

Advanced Circuit-Level Model of Magnetic Tunnel Junction-based Spin-Torque Oscillator with Perpendicular Anisotropy Field

  • Kim, Miryeon;Lim, Hyein;Ahn, Sora;Lee, Seungjun;Shin, Hyungsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.556-561
    • /
    • 2013
  • Interest in spin-torque oscillators (STOs) has been increasing due to their potential use in communication devices. In particular the magnetic tunnel junction-based STO (MTJ-STO) with high perpendicular anisotropy is gaining attention since it can generate high output power. In this paper, a circuit-level model for an in-plane magnetized MTJ-STO with partial perpendicular anisotropy is proposed. The model includes the perpendicular torque and the shift field for more accurate modeling. The bias voltage dependence of perpendicular torque is represented as quadratic. The model is written in Verilog-A, and simulated using HSPICE simulator with a current-mirror circuit and a multi-stage wideband amplifier. The simulation results show the proposed model can accurately replicate the experimental data such that the power increases and the frequency decreases as the value of the perpendicular anisotropy gets close to the value of the demagnetizing field.

Modeling of IPMC (Ionic Polymer-Metal Composite) Sensor to Effectively Detect the Bending Angles of a Body

  • Park, Ki-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.375-381
    • /
    • 2011
  • Ionic polymer-metal composite(IPMC) consists of an ion conductive membrane plated by metallic electrodes on both surfaces. When it bends, a voltage is generated between two electrodes. Since IPMC is flexible and thin, it can be easily mounted on the various surfaces of a body. The present study investigates a sensor system using IPMC to effectively detect the bending angles applied on IPMC sensor. The paper evaluates several R and C circuit models that describe the physical composition of IPMC and selects the best model for the detection of angles. The circuit models implemented with a charge model describe the relationship between input bending angles and output voltages. The identification of R and C values was performed by minimizing the error between the real output voltages and the simulated output voltages from the circuit models of IPMC sensor. Then the output signal of a sensor was fed into the inverse model of the identified model to reproduce the bending angles. In order to support the validation of the model, the output voltages from an arbitrary bending motion were also applied to the selected inverse model, which successfully reproduced the arbitrary bending motion.

Design of clock/data recovery circuit for optical communication receiver (광통신 수신기용 클럭/데이타 복구회로 설계)

  • Lee, Jung-Bong;Kim, Sung-Hwan;Choi, Pyung
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.11
    • /
    • pp.1-9
    • /
    • 1996
  • In the following paper, new architectural algorithm of clock and data recovery circuit is proposed for 622.08 Mbps optical communication receiver. New algorithm makes use of charge pump PLL using voltage controlled ring oscillator and extracts 8-channel 77.76 MHz clock signals, which are delayed by i/8 (i=1,2, ...8), to convert and recover 8-channel parallel data from 662.08 Mbps MRZ serial data. This circuit includes clock genration block to produce clock signals continuously even if input data doesn't exist. And synchronization of data and clock is doen by the method which compares 1/2 bit delayed onput data and decided dta by extracted clock signals. Thus, we can stabilize frequency and phase of clock signal even if input data is distorted or doesn't exist and simplify receiver architecture compared to traditional receiver's. Also it is possible ot realize clock extraction, data decision and conversion simulataneously. Verification of this algorithm is executed by DESIGN CENTER (version 6.1) using test models which are modelized by analog behavior modeling and digital circuit model, modified to process input frequency sufficiently, in SPICE.

  • PDF

Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries

  • Choi, Woosung;Shin, Heon-Cheol;Kim, Ji Man;Choi, Jae-Young;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • As research on secondary batteries becomes important, interest in analytical methods to examine the condition of secondary batteries is also increasing. Among these methods, the electrochemical impedance spectroscopy (EIS) method is one of the most attractive diagnostic techniques due to its convenience, quickness, accuracy, and low cost. However, since the obtained spectra are complicated signals representing several impedance elements, it is necessary to understand the whole electrochemical environment for a meaningful analysis. Based on the understanding of the whole system, the circuit elements constituting the cell can be obtained through construction of a physically sound circuit model. Therefore, this mini-review will explain how to construct a physically sound circuit model according to the characteristics of the battery cell system and then introduce the relationship between the obtained resistances of the bulk (Rb), charge transfer reaction (Rct), interface layer (RSEI), diffusion process (W) and battery characteristics, such as the state of charge (SOC), temperature, and state of health (SOH).

Performance Evaluation of a $SF_6$ Gas Circuit Breaker with Experimental Investigation (초고압 $SF_6$ 가스 차단기의 실험적 차단성능 평가)

  • Jeong, Y.W.;Park, H.T.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.96-99
    • /
    • 2005
  • In this study, we build system and techniques of evaluating the interruption performance of the GCB with experimental method. We constructed a simplified synthetic test circuit of which ability is up to 245kV, 50kA BTF test. And We composed a model test circuit breaker with puffer assisted self blasting type GCB. With this circuit breaker, we carried out the experiment of no load and SLF90. During the tests, we measured the several factors such as stroke, pressure, arc temperature, the voltage and current near the current zero and dI/dt, dV/dt. Arc conductivity before 200ns before current zero which is one of the indexes of the thermal recovery of a GCB was measured. With these kinds of measurement, we could estimate the performance of a GCB fundamentally. Futhermore these results were used to adjust the arc modeling with CFD(computational fluid dynamics) and we could increase the plausibility of the analytical method.

  • PDF

22.9kV GIS Modeling and Transient Recovery Voltage Analysis Using EMTP/RV (EMTP/RV를 이용한 22.9kV GIS 모델링과 과도회복전압 해석)

  • Jyung, Tae-Young;Baek, Young-Sik;Jeong, Ki-Seok;Park, Ji-Ho;Seo, Gyu-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1199-1205
    • /
    • 2010
  • The recent power system is required to a large size of facilities and high power technology according to increasing power demand. However, it could lead to spoiling the beauty of city and environment problem. The miniaturized facilities with large capacity such as GIS have been required in recent power system. The GIS(Gas Insulated Substation) using the SF6 insulation gas enables to miniaturize facilities with large capacity with high insulation performance. However, the substation installed GIS has required to new design model which is different from the conventional substation. The TRV(Transient Recovery Voltage) analysis on simple circuit may applied by differential equation. However, in case of relatively complicated system, EMTP(Electro Magnetic Transients Program) mainly has been used to design and simulate for transient analysis. This paper mainly design the 22.9 kV GIS system and analyze the transient recovery voltage of main circuit breaker using EMTP/RV. It also enables to easily design the other substation installed GIS with same maker and voltage level because the proposed GIS model consists of separated modules such as busbar, circuit breaker, bushing, CT, PT etc. Eventually, it contributes to comfortably compare the interrupting performance of circuit breaker and system TRV corresponding to the substation system configuration.

Small-Size Induction Machine Equivalent Circuit Including Variable Stray Load and Iron Losses

  • Basic, Mateo;Vukadinovic, Dinko
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1604-1613
    • /
    • 2018
  • The paper presents the equivalent circuit of an induction machine (IM) model which includes fundamental stray load and iron losses. The corresponding equivalent resistances are introduced and modeled as variable with respect to the stator frequency and flux. Their computation does not require any tests apart from those imposed by international standards, nor does it involve IM constructional details. In addition, by the convenient positioning of these resistances within the proposed equivalent circuit, the order of the conventional IM model is preserved, thus restraining the inevitable increase of the computational complexity. In this way, a compromise is achieved between the complexity of the analyzed phenomena on the one hand and the model's practicability on the other. The proposed model has been experimentally verified using four IMs of different efficiency class and rotor cage material, all rated 1.5 kW. Besides enabling a quantitative insight into the impact of the stray load and iron losses on the operation of mains-supplied and vector-controlled IMs, the proposed model offers an opportunity to develop advanced vector control algorithms since vector control is based on the fundamental harmonic component of IM variables.

Design of ESD Protection Circuit with improved Snapback characteristics Using Stack Structure (스텍 구조를 이용한 향상된 스냅백 특성을 갖는 ESD 보호회로 설계)

  • Song, Bo-Bae;Lee, Jea-Hack;Kim, Byung-Soo;Kim, Dong-Sun;Hwang, Tae-Ho
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.280-284
    • /
    • 2021
  • In this paper, a new ESD protection circuit is proposed to improve the snapback characteristics. The proposed a new structure ESD protection circuit applying the conventional SCR structural change and stack structure. The electrical characteristics of the structure using penta-well and double trigger were analyzed, and the trigger voltage and holding voltage were improved by applying the stack structure. The electron current and total current flow were analyzed through the TCAD simulation. The characteristics of the latch-up immunity and excellent snapback characteristics were confirmed. The electrical characteristics of the proposed ESD protection circuit were analyzed through HBM modeling after forming a structure through TCAD simulator.

Copper Recovery from Printed Circuit Boards Waste Sludge: Multi-step Current Electrolysis and Modeling

  • Nguyen, Huyen T.T.;Pham, Huy K.;Nguyen, Vu A.;Mai, Tung T.;Le, Hang T.T.;Hoang, Thuy T.B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.186-198
    • /
    • 2022
  • Heavy metals recovery from Printed Circuit Boards industrial wastewater is crucial because of its cost effectiveness and environmental friendliness. In this study, a copper recovery route combining the sequential processes of acid leaching and LIX 984N extracting with an electrowinning technique from Printed Circuit Boards production's sludge was performed. The used residual sludge was originated from Hanoi Urban Environment One Member Limited Company (URENCO). The extracted solution from the printed circuit boards waste sludge containing a high copper concentration of 19.2 g/L and a small amount of iron (0.575 ppm) was used as electrolyte for the subsequent electrolysis process. By using a simulation model for multi-step current electrolysis, the reasonable current densities for an electrolysis time interval of 30 minutes were determined, to optimize the specific consumption energy for the copper recovery. The mathematical simulation model was built to calculate the important parameters of this process.