• 제목/요약/키워드: circle-foliated surface

검색결과 3건 처리시간 0.017초

CIRCLE-FOLIATED MINIMAL SURFACES IN 4-DIMENSIONAL SPACE FORMS

  • PARK, SUNG-HO
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1433-1443
    • /
    • 2015
  • Catenoid and Riemann's minimal surface are foliated by circles, that is, they are union of circles. In $\mathbb{R}^3$, there is no other nonplanar example of circle-foliated minimal surfaces. In $\mathbb{R}^4$, the graph $G_c$ of w = c/z for real constant c and ${\zeta}{\in}\mathbb{C}{\backslash}\{0}$ is also foliated by circles. In this paper, we show that every circle-foliated minimal surface in $\mathbb{R}$ is either a catenoid or Riemann's minimal surface in some 3-dimensional Affine subspace or a graph surface $G_c$ in some 4-dimensional Affine subspace. We use the property that $G_c$ is circle-foliated to construct circle-foliated minimal surfaces in $S^4$ and $H^4$.

MINIMAL AND CONSTANT MEAN CURVATURE SURFACES IN 𝕊3 FOLIATED BY CIRCLES

  • Park, Sung-Ho
    • 대한수학회보
    • /
    • 제56권6호
    • /
    • pp.1539-1550
    • /
    • 2019
  • We classify minimal surfaces in ${\mathbb{S}}^3$ which are foliated by circles and ruled constant mean curvature (cmc) surfaces in ${\mathbb{S}}^3$. First we show that minimal surfaces in ${\mathbb{S}}^3$ which are foliated by circles are either ruled (that is, foliated by geodesics) or rotationally symmetric (that is, invariant under an isometric ${\mathbb{S}}^1$-action which fixes a geodesic). Secondly, we show that, locally, there is only one ruled cmc surface in ${\mathbb{S}}^3$ up to isometry for each nonnegative mean curvature. We give a parametrization of the ruled cmc surface in ${\mathbb{S}}^3$(cf. Theorem 3).

INTERPOLATION OF SURFACES WITH GEODESICS

  • Lee, Hyun Chol;Lee, Jae Won;Yoon, Dae Won
    • 대한수학회지
    • /
    • 제57권4호
    • /
    • pp.957-971
    • /
    • 2020
  • In this paper, we introduce a new method to construct a parametric surface in terms of curves and points lying on Euclidean 3-space, called a C0-Hermite surface interpolation. We also prove the existence of a C0-Hermite interpolation of isoparametric surfaces with the so-called marching scale functions, and give some examples. Finally, we construct ruled surfaces and surfaces foliated by a circle as an isoparametric surface.