• Title/Summary/Keyword: circadian rhythms

Search Result 91, Processing Time 0.024 seconds

Analysis of Locomotor Activity and Body Temperature Rhythms in the Process of Daily Torpor in Djungarian Hamsters (Phodopus sungorus)

  • Tsurumi, Toshiko;Masuda, Atsuko;Oishi, Tadashi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.252-254
    • /
    • 2002
  • Djungarian hamsters show distinct seasonal rhythms in several physiological parameters. One of them is daily torpor that occurs in winter with decreased body temperature (about 1O-20$^{\circ}$C) during daytime. Daily torpor is induced by short-day photoperiod, food restriction and castration. But the mechanism to induce daily torpor has not been clarified. In the present study, we tried to clarify the process of daily torpor induction in detail. Adult male hamsters were kept in long photoperiod and high temperature (LP-HT) before the experiment and, thereafter, the animals were transferred to short photoperiod and low temperature (SP-LT), and they were kept in this condition for about six months. The daily rhythms of locomotor activity and body temperature were recorded every three-minutes by using the Minimitter telemetry system. Locomotor activity and body temperature showed very closely synchronized rhythms. All animals under LP-HT showed daily rhythms with higher locomotor activity and body temperature in nighttime than in daytime. Under SP-LT, there were two types of animals with and without showing daily torpor. Thus, they have individual differences in the response to SP -LT.

  • PDF

Demand-feeding and Locomotor Circadian Rhythms in the Red sea bream, Pagrus major

  • Choe Yong-Gwon;Choi Jae-Eun;Roh Duk-Whan;Choi Cheol-Young
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.3
    • /
    • pp.130-137
    • /
    • 2001
  • In the present study, the locomotor and feeding activities of single red sea bream, Pagrus major were simultaneously investigated to examine the existence of such dual behaviour. Seven red sea bream of 13cm body length on average were placed individually in 35L tanks equipped with an infrared sensor and a newly developed demand-feeding device. Fish were exposed to a light: dark 12: 12h cycle and constant darkness (DD) to study endogenous rhythmicity. Under LD 12: 12 h, the daily pattern of behaviour differed between individual fish; some red sea bream were diurnal and others were nocturnal. Futhermore, some of them displayed an extraordinary flexibility in phasing because they were dark active but light feeding, and vice versa. Under DD, red sea bream showed free-running rhythms for locomotor activity and feeding. These results indicate that the type of phasing of locomotor activity did not necessarily decide the feeding phase; much of this is explained by the fact that red sea bream were demand-fed. Flexibility in phasing and a certain degree of independence between locomotor and feeding activities could be seen as an adaptative response of the highly adaptable circadian rhythms of fish.

  • PDF

Anatomy and Physiology in Human Circadian Rhythms (인체 일주기리듬의 해부학 및 생리학)

  • Sohn, Chang-Ho
    • Sleep Medicine and Psychophysiology
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • Chronobiology is the area of medicine that is, how time-related event shape our daily biologic responses and apply to any aspect of medicine with regard to altering pathophysiology and treatment response. In mammals, there are several evidences that prove suprachiasmatic nuclei(SCN) is the major circadian pacemaker and the circadian rhythm influences so many biological aspects of an living organism such as rest-activity, thermoregulation, reproduction, and endocrine system. In case of human beings, there had been little information of circadian system. That may be due to the experimental, technical difficulties to study but also to the fact that human has the more complex environments that may alter the circadina rhythm like the artificial light, many socio-cultural aspects and so forth. However, several reports of these days indicate human's circadian system is composed of two or more circadian oscillators and SCN is the major circadian oscillator among them like the other mammals. Free-running circadinan period of mankind is about 24 hours rather than about 25 hours, and rest-activity rhythm is polymodal like other species. In addition to that, human may have capcities to change the circadian rhythm as the seasonal changes of daynight schedule. In this article, the author will summarize recent progress of anatomy and physiology of the circadian clock mechanism in humans.

  • PDF

Ultradian Rhythms in the Hypothalamic Arcuate Nucleus Kisspeptin Neurons and Developmental Processes

  • Kim, Doyeon;Choe, Han Kyoung;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.600-606
    • /
    • 2020
  • Numerous physiological processes in nature have multiple oscillations within 24 h, that is, ultradian rhythms. Compared to the circadian rhythm, which has a period of approximately one day, these short oscillations range from seconds to hours, and the mechanisms underlying ultradian rhythms remain largely unknown. This review aims to explore and emphasize the implications of ultradian rhythms and their underlying regulations. Reproduction and developmental processes show ultradian rhythms, and these physiological systems can be regulated by short biological rhythms. Specifically, we recently uncovered synchronized calcium oscillations in the organotypic culture of hypothalamic arcuate nucleus (ARN) kisspeptin neurons that regulate reproduction. Synchronized calcium oscillations were dependent on voltage-gated ion channel-mediated action potentials and were repressed by chemogenetic inhibition, suggesting that the network within the ARN and between the kisspeptin population mediates the oscillation. This minireview describes that ultradian rhythms are a general theme that underlies biological features, with special reference to calcium oscillations in the hypothalamic ARN from a developmental perspective. We expect that more attention to these oscillations might provide insight into physiological or developmental mechanisms, since many oscillatory features in nature still remain to be explored.

Proteomic Analysis of Circadian Clock Mutant Mice

  • Lee Joon-Woo;Kim Han-Gyu;Bae Kiho
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.493-501
    • /
    • 2005
  • Circadian rhythms, time on a scale of about 24 hours, are present in a number of organisms including animals, plants, and bacteria. The control of the biochemical, physiological and behavioral processes is regulated by endogenous clocks in the suprachiasmatic nucleus (SCN). At the core of this timing mechanism is molecular machinery that are present both in the brain and in the peripheral tissues throughout the body, and even in a single cultured cell. In this study, we performed two-dimensional gel electrophoresis to figure out any correlation between protein expression patterns and the requirement of two canonical clock proteins, either mPER1 or mPER2, by comparing global protein expression profiles in livers from wildtype or mPer1/mPer2 double mutant mice. We could identify several differentially expressed protein candidates with respect to time and genotypes. Further analysis of these candidate proteins in detail in vivo will lead us to the better understanding of how circadian clock functions in mammals.

  • PDF

Possible involvement of temperature-entrainable timing system in arrhythmic mutant flies in Drosophila melanogaster

  • Yoshii, Taishi;Tomioka, Kenji
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.240-242
    • /
    • 2002
  • In Drosophila melanogaster, it is known that the circadian clock consists of an autoregulatory feedback loop, which includes so-called clock genes, such as per, tim, dClk and cyc and produces periodical expression of per. It is recently suggested, however, that the circadian oscillation without the rhythmical expression of per is involved in the regulation of circadian locomotor rhythms. In the present study, we examined the existence and the property of the possible per-less oscillation using arrhythmic clock mutant flies carrying per$^{01}$, tim$^{01}$, dClk$^{Jrk}$ or cyc$^{01}$. When temperature cycles consisting of 25$^{\circ}$C and 30$^{\circ}$C with varying periods (T = 8~32 hr) were given, they showed rhythms synchronizing with the given cycle under constant darkness (DD). per$^{01}$ and tim$^{01}$ flies always showed a peak around 7 hr after the onset of thermophase irrespective of Ts of temperature cycles, while dClk$^{Jrk}$ and cyc$^{01}$ flies did not. In addition, several days were necessary to establish a clear temperature entrainment in per$^{01}$ and tim$^{01}$ flies, when they were transferred from a constant temperature to a temperature cycle under DD. These results suggest that per$^{01}$ and tim$^{01}$ flies have a temperature-entrainable weak oscillatory mechanism. The fact that dClk$^{Jrk}$ and cyc$^{01}$ flies did not show any sign of the endogenous oscillation suggests that the per-less oscillatory mechanism may require CLK and CYC.

  • PDF

Fatigue of Night Shift Nurses Seen in Circadian Types at Intensive Care units (중환자실 간호사의 Circadian 유형에 따른 밤근무 피로도 조사)

  • YANG, Ji-Sun
    • Korean Journal of Occupational Health Nursing
    • /
    • v.9 no.2
    • /
    • pp.86-93
    • /
    • 2000
  • This study was conducted to find out the degree of tiredness, accumulated tendencies of fatigues in accordance with 3 types of circadian rhythms and 3 types of perceived fatigue signs such as physical, psychological and neurosensory aspects in before and after work at night. Samples were chosen from the 217 intensive care units nurses working in 13 general hospitals which had 3 shift rotating systems, Data were collected from November to December in 1999. Two hundreds seventeen respondents were classified by 3 circadian types such as 59 morning, 110 middle and 48 evening. Circadian type was measured by the circadian type scale which was designed by ${\ddot{O}}stberg$ and Home (1976). in order to estimate the level of tiredness, the investigator used the fatigue checklist designed by the Labor and Health Institute of Japan(1970). Analysis was done by frequency a percentages, ${\chi}^2$ test and repeated measures ANOVA test. The result of this study were as follow: 1. In the general characteristics of the subjects circadian types, moderate type had the large proportion at 50.7% and morning type had 27.2% and evening type had 22.1%. 2. According to the 3 types of fatigue signs, the highest general tendency was 'General weakness' and 'Feeling of headsore' for physically perceived sign, 'Drowsiness' for psychological sign, and 'Uncomfortableness in sight seeing' for neurosensory sign. 3. The most frequently complained fatigue were observed in physical symptoms among physical, mental, and neurosensual symptoms. The percentage of complained was higher after night work than before the work started. 4. There was not any statistical significant difference between the circadian type and the degree of physical, mental, neurosensory fatigue. 5. There was not any statistical significant difference in regarding to each date of night shift except difference between 1st and 2nd days of fatigue perceived physically. Therefore, the study concluded that the fatigue perceived by night shift nurses might be related with shift working condition rather than circadian types.

  • PDF

Effect of mPER1 on the Expression of HSP105 Gene in the Mouse SCN

  • Kim Han-Gyu;Bae Ki-Ho
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.53-56
    • /
    • 2006
  • The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the circadian pacemaker entrained to the 24-hr day by environmental time cues. Major circadian genes such as mPeriod ($mPer1{\sim}3$) and mCryptochrome ($mCry1{\sim}2$) are actively transcribed by the action of CLOCK/BMAL heterodimers, and in turn, these are being suppressed by the mPER/mCRY complex. In the study, the locomotor activity rhythms of mPer1 Knockout (KO) mice are measured, and the expression profiles of Heat Shock Protein 105kDa (HSP 105) genes in the SCN were measured by in situ hybridization. In agreement with previous reports, the locomotor activity rhythm of mPer1 KO mice was much shorter than that of wildtype. In addition, the total bout of activity of mPer1 KO was less in comparison to control mice. The expression of HSP 105 in the SCN of mPer1 KO mice was ranged from CT6 to CT22, with a peak level at CT14, implying that the gene are under the control of circadian clock. However, the expression of HSP 105 in the SCN of wildtype could not be detected in our study. Further analysis will reveal the direct or indirect regulation by mPer1 on the expression in the SCN and the role of the gene in the circadian clock.

  • PDF

Photoperiodic and Circadian Photoreception in the Silkworm, Bombyx mori

  • Shimizu, Isamu;Sakamoto, Katuhiko;Iwasa, Tatsuo
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.17-20
    • /
    • 2002
  • We have cloned a cDNA for an opsin (Boceropsin) from the silkworm larval brain which was suggested to contain the photoperiodic receptor. Its deduced amino acid sequence was composed of 381 amino acids and included amino acid residues highly conserved in insect visual pigments. This opsin belonged to the long wavelength photoreceptor group of insect opsins, and are presumed to be photoperiodic receptor. RT-PCR analysis revealed that Boceropsin mRNA is expressed in the larval brain, but not in the subesophageal (Sg) and thoracic ganglion. Immunohistochemical analyses demonstrated that Boceropsin protein is present bilaterally in some defined cells localized in the brain of the Bombyx larva. Boceropsin was considered not to be involved in the circadian photoreception, because carotenoids are not indispensable for the photoreception and formation of circadian rhythms in the silkworm.

  • PDF