• Title/Summary/Keyword: cinnamate

Search Result 94, Processing Time 0.027 seconds

Hydrogel Contact Lens Materials with Improved UV Blocking Effect

  • Kim, Duck-Hyun;Sung, A-Young
    • Journal of Integrative Natural Science
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • HEMA, AA, MMA, and EGDMA as crosslinking agent and AIBN as an initiator, and 2,4-dihydroxybenzophenone, 2-ethylhexyl-trans-4-methoxy-cinnamate, 2-hydroxy-4-(methacryloyloxy)benzophenone as additives at 0.1-1.0% ratios were used to manufacture hydrophilic ophthalmic lenses through thermal polymerization before their physical properties were measured. The results showed that the samples containing of 2,4-dihydroxybenzophenone and 2-ethylhexyl-trans-4-methoxy-cinnamate resulted in a decrease of the UV blocking performance after high-pressure sterilization whereas the sample containing 2-hydroxy-4-(methacryloyloxy)benzophenone showed no change in the UV blocking performance. It is judged that this is induced by presence or absence of an acyl functional group in benzophenone.

Synthesis and Photocharacteristics of Poly(p-Anol-Formaldehyde) Cinnamate (Poly(p-Anol-Formaldehyde) Cinnamate의 합성과 그 감광특성)

  • Kwon, Soon-Yong;Seo, Kum-Jong;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • Poly(p-anol-formaldehyde) cinnamates(AGEFCs) were synthesized to prepare a photo-sensitive polymer which enabled to be photodimerized via 6-center reaction. The photocharacteristics of the mixture of the AGEFCs and a sensitizer after exposure to light was tested. The yield of the residual film, which was closely related to the sensitivity of the film, was affected by the degree of polymerization of the backbone resin, sensitizers and their concentration. AGEFC-3 revealed a good photosensitive effect such as about 73% yield of residual film at 128 min. of exposed time.

cDNA cloning and expression pattern of Cinnamate-4-Hydroxylase in the Korean black raspberry

  • Baek, Myung-Hwa;Chung, Byung-Yeoup;Kim, Jin-Hong;Kim, Jae-Sung;Lee, Seung-Sik;An, Byung-Chull;Lee, In-Jung;Kim, Tae-Hoon
    • BMB Reports
    • /
    • v.41 no.7
    • /
    • pp.529-536
    • /
    • 2008
  • Cinnamate-4-hydroxylase (C4H) is a key enzyme in the phenylpropanoid pathway, which is responsible for synthesizing a variety of secondary metabolites that participate in development and adaptation. In this study, we isolated a full-length cDNA of the C4H gene from the Korean black raspberry (Rubus sp.) and found that this gene existed as a single gene. By comparing the deduced amino acid sequence of Rubus sp. C4H with other sequences reported previously we determined that this sequence was highly conserved among widely divergent plant species. In addition, quantitative real time PCR studies indicated that the C4H gene had a differential expression pattern during fruit development, where gene expression was first detected in green fruit and was then remarkably reduced in yellow fruit, followed by an increase in red and black fruit. To investigate the two peaks in expression observed during fruit development and ripening, we measured the flavonoid content. The content of the major flavanol of Korean black raspberry fruits was determined to be highest at the beginning of fruit development, followed by a gradually decrease according to the developmental stages. In contrast, the content of anthocyanins during the progress of ripening was dramatically increased. Our results suggest that the C4H gene in Korean black raspberry plays a role during color development at the late stages of fruit ripening, whereas the expression of C4H gene during the early stages may be related to the accumulation of flavanols.

Cloning and Characterization of Cinnamate-4-Hydroxylase Gene from Rubus occidentalis L.

  • Lee, Eun Mi;Lee, Seung Sik;An, Byung Chull;Barampuram, Shyamkumar;Kim, Jae-Sung;Cho, Jae-Young;Lee, In-Chul;Chung, Byung Yeoup
    • Journal of Radiation Industry
    • /
    • v.2 no.3
    • /
    • pp.97-104
    • /
    • 2008
  • Cinnamate-4-hydroxylase (C4H) is a key enzyme of phenylpropanoid pathway, which leads a variety of secondary metabolites to participate in differentiation and protection of plant against environmental stresses. In this study, we isolated a full-length cDNA of the C4H gene from a black raspberry (Rubus occidentalis L.), using a reverse transcriptase-PCR and rapid amplification of the cDNA ends (RACE)-PCR. The full-length cDNA of the RocC4H gene contained a 1,515 bp open reading frame (ORF) encoding a 504 amino acid protein with a calculated molecular weight of about 57.9 kDa and an isoelectric point (pI) value of 9.1. The genomic DNA analysis revealed that RocC4H gene had three exons and two introns. By multiple sequence alignment, RocC4H protein was highly homologous with other plant C4Hs, and the cytochrome P450-featured motifs, such as the heme-binding domain, the T-containing binding pocket motif (AAIETT), the ERR triad, and the tetrapeptide (PPGP) hinge motif, were highly conserved. Southern blot analysis revealed that RocC4H is a single copy gene in R. occidentalis.