DOI QR코드

DOI QR Code

cDNA cloning and expression pattern of Cinnamate-4-Hydroxylase in the Korean black raspberry

  • Baek, Myung-Hwa (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Chung, Byung-Yeoup (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Jin-Hong (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Jae-Sung (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Seung-Sik (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • An, Byung-Chull (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, In-Jung (Department of Agronomy, Kyungpook National University) ;
  • Kim, Tae-Hoon (Department of Herbal Medicinal Pharmacology, Daegu Haany University)
  • Published : 2008.07.31

Abstract

Cinnamate-4-hydroxylase (C4H) is a key enzyme in the phenylpropanoid pathway, which is responsible for synthesizing a variety of secondary metabolites that participate in development and adaptation. In this study, we isolated a full-length cDNA of the C4H gene from the Korean black raspberry (Rubus sp.) and found that this gene existed as a single gene. By comparing the deduced amino acid sequence of Rubus sp. C4H with other sequences reported previously we determined that this sequence was highly conserved among widely divergent plant species. In addition, quantitative real time PCR studies indicated that the C4H gene had a differential expression pattern during fruit development, where gene expression was first detected in green fruit and was then remarkably reduced in yellow fruit, followed by an increase in red and black fruit. To investigate the two peaks in expression observed during fruit development and ripening, we measured the flavonoid content. The content of the major flavanol of Korean black raspberry fruits was determined to be highest at the beginning of fruit development, followed by a gradually decrease according to the developmental stages. In contrast, the content of anthocyanins during the progress of ripening was dramatically increased. Our results suggest that the C4H gene in Korean black raspberry plays a role during color development at the late stages of fruit ripening, whereas the expression of C4H gene during the early stages may be related to the accumulation of flavanols.

Keywords

References

  1. But, P. P. H., Kimura, T., Guo, J. X. and Han, B. H. (1997) International Collation of Traditional and Folk Medicine (II). World Scientific, New Jesrsey, USA.
  2. Cha, H. S., Lee, M. K., Hwang, J. B., Park, M. S. and Park, K. M. (2001) Physicochemical characteristics of Rubus coreanus Miquel. J. Kor. Soc. Food Sci. Nutri. 30, 1021- 1025.
  3. Pang, G. C., Kim, M. S. and Lee, M. W. (1996) Hydrolyzable tannins from the fruits of Rubus coreanum. Kor. J. Pharmacogn. 27, 366-370.
  4. Nam, J. H., Jung, H. J., Choi, J. W., Lee, K. T. and Park, H. J. (2006) The anti-gastropathic and anti-rheumatic effect of niga-ichigoside F1 and 23-hydroxytormentic acid isolated from the unripe fruits of Rubus coreanus in a rat model. Biol. Pharm. Bull. 29, 967-970. https://doi.org/10.1248/bpb.29.967
  5. Weisshaar, B. and Jenkins, G. I. (1998) Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1, 251-257. https://doi.org/10.1016/S1369-5266(98)80113-1
  6. Dixon, R. A. and Steele, C. L. (1999) Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends Plant Sci. 4, 394-400. https://doi.org/10.1016/S1360-1385(99)01471-5
  7. Perkins-Veazie, P. and Nonnecke, G. (1992) Physiological changes during ripening of raspberry fruits. HortScience 27, 331-333.
  8. Kumar, A. and Ellis, B. E. (2001) The phenylalanine ammonia- lyase gene family in raspberry. structure, expression, and evolution. Plant Physiol. 127, 230-239. https://doi.org/10.1104/pp.127.1.230
  9. Sukrasno, N. and Yeoman, M. M. (1993) Phenylpropanoid metabolism during growth and development of Capsicum frutescens fruits. Phytochemistry 32, 839-844. https://doi.org/10.1016/0031-9422(93)85217-F
  10. Brodelius, P. E. (1994) Phenylpropanoid metabolism in Vanilla planifolis Andr. (V): high performance liquid chromatographic analysis of phenolic glycosides and aglycone in developing fruits. Phytochem. Anal. 5, 27-31. https://doi.org/10.1002/pca.2800050108
  11. Latza, S., Dietmar, G. and Berger, R. G. (1996) Identification and accumulation of 1-o-trans-cinnamoyl-beta-D-glucopyranose in developing strawberry fruit (Fragaria ananassa Duch. Cv. Kent). J. Agric. Food Chem. 44, 1367- 1370. https://doi.org/10.1021/jf950602f
  12. Rivera-López, J., Ordorica-Falomir, C. and Wesche-Ebeling, P. (1999) Changes in anthocyanin concentration in Lychee (Litchi chinensis Sonn.) pericarp during maturation. Food Chem. 65, 195-200. https://doi.org/10.1016/S0308-8146(98)00195-2
  13. Hahlbrock, K. and Scheel, D. (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Biol. 40, 347-369. https://doi.org/10.1146/annurev.pp.40.060189.002023
  14. Gravot, A., Larbat, R., Hehn, A., Lièvre, K., Gontier, E., Goergen, J. L. and Bourgaud, F. (1993) Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant-Ruta graveolens-exhibiting low sensitivity to psoralen inactivation. Arch. Biochem. Biophys. 305, 509-515. https://doi.org/10.1006/abbi.1993.1454
  15. Mizutani, M., Ohta, D. and Sato, R. (1997) Isolation of a cDNA and a genomic clone encoding cinnamate-4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol. 113, 755-763. https://doi.org/10.1104/pp.113.3.755
  16. Chapple, C. (1998) Molecular genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu. Rev. Plant Biol. 49, 311-343. https://doi.org/10.1146/annurev.arplant.49.1.311
  17. Koopmann, E., Logemann, E. and Hahlbrock, K. (1999) Regulation and functional expression of cinnamate 4-hydroxylase from parsley. Plant Physiol. 119, 49-56. https://doi.org/10.1104/pp.119.1.49
  18. Winkel-Shirley, B. (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plant 107, 142-149. https://doi.org/10.1034/j.1399-3054.1999.100119.x
  19. Yang, D. H., Chung, B. Y., Kim, J.-S., Kim, J.-H., Yun, P. Y., Lee, Y. K. Lim, Y. P. and Lee, M. C. (2005) cDNA cloning and sequence analysis of rice cinnamate-4-hydroxylase gene, a cytochrome P450-dependent monooxygenase, involving in the general phenylpropanoid pathway. J. Plant Biol. 48, 313-318. https://doi.org/10.1007/BF03030528
  20. Chen, A.-H., Chai, Y.-R., Li, J.-N. and Chen, L. (2007) Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus). J. Biochem. Mol. Biol. 40, 247-260. https://doi.org/10.5483/BMBRep.2007.40.2.247
  21. Ge, L. and Chiang. V. L. (1996) A full length cDNA encoding trans-cinnamate 4-hydroxylase from developing xylem of Populus tremuloides (accession no. U47293) (PGR 96-075). Plant Physiol. 112, 861. https://doi.org/10.1104/pp.112.2.861
  22. Bell-Lelong, D. A., Cusumano, J. C., Meyer, K. and Chapple, C. (1997) Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment. Plant Physiol. 113, 729-738. https://doi.org/10.1104/pp.113.3.729
  23. Kozak, M. (1984) Compilation and analysis of sequences upstream from the translation start site in eukaryotic mRNAs. Nucleic Acids Res. 12, 857-872. https://doi.org/10.1093/nar/12.2.857
  24. Gardiner-Garden, M. and Frommer, M. (1987) Significant CpG-rich regions in angiosperm genes. J. Mol. Evol. 34, 231-245. https://doi.org/10.1007/BF00162972
  25. Ashikawa, I. (2001) Gene-associated CpG islands in plants as revealed by analyses of genomic sequences. Plant J. 26, 617-625. https://doi.org/10.1046/j.1365-313x.2001.01062.x
  26. Takai, D. and Jones, P. A. (2002) Comprehensive analysis of CpG islands in human chromosomes 2122. Proc. Natl. Acad. Sci. U. S. A. 99, 3740-3745. https://doi.org/10.1073/pnas.052410099
  27. Hunt, A. G. (1994) Messenger RNA 3' end formation in plants. Annu. Rev. Plant Biol. 45, 47-60. https://doi.org/10.1146/annurev.pp.45.060194.000403
  28. Balmer, L. A., Beveridge, D. J., Jazayeri, J. A., Thomson, A. M., Walker, C. E. and Leedman, P. J. (2001) Identification of a novel AU-rich element in the 3' untranslated region of epidermal growth receptor mRNA that is the target for regulated RNA-binding proteins. Mol. Cell Biol. 21, 2070-2084. https://doi.org/10.1128/MCB.21.6.2070-2084.2001
  29. Werck-Reichhart, D., Bak, S. and Paquette. S. (2002) Cytochromes P450; in The Arabidopsis Book, Somerville, C. R. and Meyerowitz, E. M. (eds.), pp 1-28 , American Society of Plant Biologists, Rockville, USA.
  30. Rupasinghe, S., Baudry, J. and Schuler, M. A. (2003) Common active site architecture and binding strategy of four phenlypropanoid P450s from Arabidopsis thaliana as revealed by molecular modeling. Protein Eng. 16, 721-731. https://doi.org/10.1093/protein/gzg094
  31. Schoch, G. A., Attias, R., Le Ret, M. and Werck-Reichhart, D. (2003) Key substrate recognition residues in the active of a plant cytochrome P450, CYP73A1. Homology guided site-directed mutagenesis. Eur. J. Biochem. 270, 3684-3695. https://doi.org/10.1046/j.1432-1033.2003.03739.x
  32. Madera, M., Vogel, C., Kummerfeld, S. K., Chothia, C. and Gough, J. (2004) The SUPERFAMILY database in 2004: additional and improvements. Nucleic Acids Res. 32, 235-239.
  33. Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., Gonzalez, F. J., Coon, M. J., Gunsalus, I. C., Gotoh, O., Okuda, K. and Nebert D. W. (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12, 1-51. https://doi.org/10.1089/dna.1993.12.1
  34. Frank, M. R., Deyneka, J. M. and Schuler, M. A. (1996) Cloning of wound-induced Cytochrome P450 monooxygenases expressed in pea. Plant Physiol. 110, 1035- 1046. https://doi.org/10.1104/pp.110.3.1035
  35. Betz, C., McCollum, T. G. and Mayer, R. T. (2001) Differential expression of two cinnamate 4-hydroxylase genes in 'Valencia' orange (Citrus sinensis Osbeck). Plant Mol. Biol. 46, 741-748. https://doi.org/10.1023/A:1011625619713
  36. Yamamura, Y., Ogihara, Y. and Mizukami, H. (2001) Cinnamic acid 4-hydroxylase from Lithospermum erythrorhizon: cDNA cloning and gene expression. Plant Cell Rep. 20, 655-662. https://doi.org/10.1007/s002990100373
  37. Nelson, D. R., Schuler, M. A., Paquette, S. M., Werck- Reichhart, D. and Bsk, S. (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol. 135, 756-772. https://doi.org/10.1104/pp.104.039826
  38. Jaakola, L., Pirttilä, A. M. and Hohtola, A. (2001) cDNA blotting offers an alternative method for gene expression studies. Plant Mol. Biol. Rep. 19, 125-128. https://doi.org/10.1007/BF02772154
  39. Jaakola, L., Maatta, K., Pirttila, A. M., Törrönen, R., Karenlampi, S. and Hohtola, A. (2002) Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol. 130, 729-739. https://doi.org/10.1104/pp.006957
  40. Jaakola, L., Määttä, K., Karenlampi, S. and Hohtola. A.(2004) Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218, 721-728. https://doi.org/10.1007/s00425-003-1161-x
  41. Kumar, A. and Ellis. B. E. (2003) 4-Coumarate:CoA ligase gene family in Rubus idaeus: cDNA structures, evolution, and expression. Plant Mol. Biol. 31, 327-340.
  42. Moriguchi, T., Kita, M., Tomono, Y., Endo-Inagaki, T. and Omura, M. (2001) Gene expression in flavonoid biosynthesis: Correlation with flavonoid accumulation in developing citrus fruit. Physiol Plant 111, 66-74. https://doi.org/10.1034/j.1399-3054.2001.1110109.x
  43. Boss, P. K., Davies, C. and Robinsson, S. P. (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries, and the implications for pathway regulation. Plant Physiol. 111, 1059-1066. https://doi.org/10.1104/pp.111.4.1059
  44. Kobayashi, S., Ishimaru, M., Ding, C. K., Yakushiji, H. and Goto, N. (2001) Comparison of UDPglucose: flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Sci. 160, 543-550. https://doi.org/10.1016/S0168-9452(00)00425-8
  45. Cheng, G. W. and Breen, P. J. (1991) Activity of phenylalanine ammonialyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J. Am. Soc. Hortic. Sci. 116, 865-869.
  46. Moyano, E., Portero-Robles, I., Medina-Escobar, N., Valpuesta, V., Muũoz-Blanco, J. and Caballero, J. L. (1998) A fruit-specific putative dihydroflavonol 4-reductase gene is differentially expressed in strawberry during the ripening process Plant Physiol. 117, 711-716. https://doi.org/10.1104/pp.117.2.711
  47. Azevedo, H., Lino-Neto, T. and Tavares, R. M. (2003) An improved method for high-quality RNA isolation form needles of adult maritime pine trees. Plant Mol. Biol. Rep. 21, 333-338. https://doi.org/10.1007/BF02772582
  48. Doyle, J. J. and Doyle, J. L. (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem. Bull. 19, 11-15.
  49. Livak, K. and Schmittgen, T. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $2^{{-\Delta}{\Delta}Ct}$method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  50. Tanaka, A., Tano, S., Chantes, T., Yokota, Y., Shikazono, N. and Watanabe, H. (1997) A new Arabidopsis mutant induced by ion beams affects flavonoid synthesis with spotted pigmentation in testa. Genes Genet. Syst. 72, 141-148. https://doi.org/10.1266/ggs.72.141
  51. Martin, T., Oswald, O. and Graham, I. A. (2002) Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiol. 128, 472-481. https://doi.org/10.1104/pp.010475
  52. Lee, Y., Yoon, H. R., Paik, Y. S., Liu, J. R., Chung, W.-I. and Choi, G. (2005) Reciprocal regulation of Arabidopsis UGT78D2 and BANYULS is critical for regulation of the metabolic flux of anthocyanidins to condensed tannins in developing seed coasts. J. Plant Biol. 48, 356-370. https://doi.org/10.1007/BF03030577
  53. Broadhurst, R. B. Jones, W. T. (1978) Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric. 29, 788-794. https://doi.org/10.1002/jsfa.2740290908

Cited by

  1. Advances in functional research of antioxidants and organoleptic traits in berry crops vol.34, pp.1, 2008, https://doi.org/10.1002/biof.5520340104
  2. Molecular Cloning and Yeast Expression of Cinnamate 4-Hydroxylase from Ornithogalum saundersiae Baker vol.19, pp.2, 2014, https://doi.org/10.3390/molecules19021608
  3. Identification of upregulated genes in laminarin-treated poplar (Populus alba × P. tremula var. glandulosa) suspension cells by suppression subtractive hybridization and cDNA microarray vol.62, pp.1-6, 2013, https://doi.org/10.1515/sg-2013-0029
  4. Expression profile of phenylpropanoid pathway genes in Decalepis hamiltonii tuberous roots during flavour development vol.8, pp.8, 2018, https://doi.org/10.1007/s13205-018-1388-7
  5. Anthocyanin Degrading and Chlorophyll Accumulation Lead to the Formation of Bicolor Leaf in Ornamental Kale vol.20, pp.3, 2019, https://doi.org/10.3390/ijms20030603