• Title/Summary/Keyword: chronic myeloid leukemia

Search Result 56, Processing Time 0.024 seconds

Effect of N-acetyl-L-cysteine on human chronic myeloid leukemia cells KCL22 treated with mitomycin C

  • Simonyan, Anna;Hovhannisyan, Galina;Aroutiounian, Rouben;Kim, Jin Kyu
    • Journal of Ecology and Environment
    • /
    • v.37 no.1
    • /
    • pp.31-34
    • /
    • 2014
  • The effectiveness of N-acetyl-L-cysteine (NAC) to protect blood cells against Mitomycin C (MMC) induced genotoxicity was investigated in human chronic myeloid leukemia cells (KCL22) using the alkaline comet assay. The comet assay was selected as sensitive and rapid method for analysis of DNA damage and repair in individual cells. NAC treatment alone did not produce any damage in KCL22 cell. But NAC was found to be effective in reducing genotoxic damage in KCL22 cells exposed to MMC. These results confirm the literature data that, given the safety and ability to reduce DNA damage. NAC may be useful to prevent drug-mediated genotoxicity.

Development of Chronic Neutrophilic Leukemia

  • Seo, Byoung-Boo;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.415-420
    • /
    • 2011
  • The experimental manipulation of protooncogenes and their gene products is a valuable research tool for the study of human neoplasia. In this study, the recently identified human cervical cancer protooncogene (HccR-2) was expressed in transgenic mice under the control of the tetracycline regulatory system. Mice expressing the HccR-2 transgene showed an altered myeloid development characterized by an increased percentage of mature and band-form neutrophils in the peripheral blood, liver and spleen. This phenotype is similar to human chronic neutrophilic leukemia (CNL) in many ways, which is a rare chronic myeloproliferative disorder (CMD) that presents as a sustained leukocytosis of mature neutrophils with a few or no circulating immature granulocytes, an absence of peripheral blood monocytosis, basophilia, or eosinophilia, and an infiltration of neutrophils into the liver, spleen and kidney. Thus, the HccR-2 transgenic mouse model is imperative not only for investigating the biological properties of the HccR-2 protooncogene in vivo, but also for analyzing the mechanisms involved in the progression of CNL.

LncRNA MEG3 Regulates Imatinib Resistance in Chronic Myeloid Leukemia via Suppressing MicroRNA-21

  • Zhou, Xiangyu;Yuan, Ping;Liu, Qi;Liu, Zhiqiang
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.490-496
    • /
    • 2017
  • Imatinib resistance has become a major clinical problem for chronic myeloid leukemia. The aim of the present study was to investigate the involvement of MEG3, a lncRNA, in imatinib resistance and demonstrate its underlying mechanisms. RNAs were extracted from CML patients' peripheral blood cells and human leukemic K562 cells, and the expression of MEG3 was measured by RT-qPCR. Cell proliferation and cell apoptosis were evaluated. Western blotting was used to measure the protein expression of several multidrug resistant transporters. Luciferase reporter assay was performed to determine the binding between MEG3 and miR-21. Our results showed that MEG3 was significantly decreased in imatinib-resistant CML patients and imatinib-resistant K562 cells. Overexpression of MEG3 in imatinib-resistant K562 cells markedly decreased cell proliferation, increased cell apoptosis, reversed imatinib resistance, and reduced the expression of MRP1, MDR1, and ABCG2. Interestingly, MEG3 binds to miR-21. MEG3 and miR-21 were negatively correlated in CML patients. In addition, miR-21 mimics reversed the phenotype of MEG3-overexpression in imatinib-resistant K562 cells. Taken together, MEG3 is involved in imatinib resistance in CML and possibly contributes to imatinib resistance through regulating miR-21, and subsequent cell proliferation, apoptosis and expression of multidrug resistant transporters.

Significance of ATM Gene Polymorphisms in Chronic Myeloid Leukemia - a Case Control Study from India

  • Gorre, Manjula;Mohandas, Prajitha Edathara;Kagita, Sailaja;Cingeetham, Anuradha;Vuree, Sugunakar;Jarjapu, Sarika;Nanchari, Santhoshirani;Meka, Phanni Bhushann;Annamaneni, Sandhya;Dunna, Nageswara Rao;Digumarti, Raghunadharao;Satti, Vishnupriya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.815-821
    • /
    • 2016
  • Background: Development of chronic myeloid leukemia (CML) involves formation of double strand breaks (DSBs) which are initially sensed by the ataxia telangiectasia mutated (ATM) signal kinase to induce a DNA damage response (DDR). Mutations or single nucleotide polymorphisms in ATM gene are known to influence the signaling capacity resulting in susceptibility to certain genetic diseases such as cancers. Materials and Methods: In the present study, we have analyzed -5144A>T (rs228589) and C4138T (rs3092856) polymorphisms of theATM gene through polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 925 subjects (476 CML cases and 449 controls). Results: The A allele of -5144A>T polymorphism and T allele of C4138T polymorphism which were known to be influencing ATM signaling capacity are significantly associated with enhanced risk for CML independently and also in combination (evident from the haplotype and diplotype analyses). Significant elevation in the frequencies of both the risk alleles among high risk groups under European Treatment and Outcome Study (EUTOS) score suggests the possible role of these polymorphisms in predicting the prognosis of CML patients. Conclusions: This study provides the first evidence of association of functional ATM gene polymorphisms with the increased risk of CML development as well as progression.

Detection of BCR/ABL Fusion Gene by Hematological and Cytogenetical Analysis in Chronic Myeloid Leukemia Patients in Quetta, Pakistan

  • Tahira, Bibi;Asif, Muhammad;Khan, Samiullah;Hussain, Abrar;Shahwani, Muhammad Naeem;Malik, Arif;Inayatullah, Syed;Iqbal, Zafar;Rasool, Mahmood
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3793-3797
    • /
    • 2015
  • Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder of pluripotent stem cells, caused by reciprocal translocation between the long arms of chromosomes 9 and 22, t(9;22)(q34;q11), known as the Philadelphia chromosome. Materials and Methods: A total of 51 CML patients were recruited in this study. Complete blood counts of all CML patients were performed to find out their total leukocytes, hemoglobin and platelets. FISH was performed for the detection of BCR-ABL fusion and cryptogenic tests using bone marrow samples were performed for the conformation of Ph (9;22)(q34;q11) and variant translocation mechanisms. Results: In cytogenetic analysis we observed that out of 51 CML patients 40 (88.9%) were Ph positive and 4 (8.88%) had Ph negative chromosomes. Mean values of WBC 134.5 $10^3/{\mu}l$, hemoglobin 10.44 mg/dl, and platelets 288.6 $10^3/{\mu}l$ were observed in this study. Conclusions: In this study, Ph positive translocation between chromosome (9:22)(q34;q11) were observed in 40 (88.9%) CML patients.

Parameters Involved in Autophosphorylation in Chronic Myeloid Leukemia: a Systems Biology Approach

  • Kumar, Himansu;Tichkule, Swapnil;Raj, Utkarsh;Gupta, Saurabh;Srivastava, Swati;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5273-5278
    • /
    • 2015
  • Background: Chronic myeloid leukemia (CML) is a stem cell disorder characterized by the fusion of two oncogenes namely BCR and ABL with their aberrant expression. Autophosphorylation of BCR-ABL oncogenes results in proliferation of CML. The study deals with estimation of rate constant involved in each step of the cellular autophosphorylation process, which are consequently playing important roles in the proliferation of cancerous cells. Materials and Methods: A mathematical model was proposed for autophosphorylation of BCR-ABL oncogenes utilizing ordinary differential equations to enumerate the rate of change of each responsible system component. The major difficulty to model this process is the lack of experimental data, which are needed to estimate unknown model parameters. Initial concentration data of each substrate and product for BCR-ABL systems were collected from the reported literature. All parameters were optimized through time interval simulation using the fminsearch algorithm. Results: The rate of change versus time was estimated to indicate the role of each state variable that are crucial for the systems. The time wise change in concentration of substrate shows the convergence of each parameter in autophosphorylation process. Conclusions: The role of each constituent parameter and their relative time dependent variations in autophosphorylation process could be inferred.

Saponins from Rubus parvifolius L. Induce Apoptosis in Human Chronic Myeloid Leukemia Cells through AMPK Activation and STAT3 Inhibition

  • Ge, Yu-Qing;Xu, Xiao-Feng;Yang, Bo;Chen, Zhe;Cheng, Ru-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5455-5461
    • /
    • 2014
  • Background: Saponins are a major active component for the traditional Chinese medicine, Rubus parvifolius L., which has shown clear antitumor activities. However, the specific effects and mechanisms of saponins of Rubus parvifolius L. (SRP) remain unclear with regard to human chronic myeloid leukemia cells. The aim of this study was to investigate inhibition of proliferation and apoptosis induction effects of SRP in K562 cells and further elucidate its regulatory mechanisms. Materials and Methods: K562 cells were treated with different concentrations of SRP and MTT assays were performed to determine cell viability. Apoptosis induction by SRP was determined with FACS and DAPI staining analysis. Western blotting was used to detect expression of apoptosis and survival related genes. Specific inhibitors were added to confirm roles of STAT3 and AMPK pathways in SRP induction of apoptosis. Results: Our results indicated that SRP exhibited obvious inhibitory effects on the growth of K562 cells, and significantly induced apoptosis. Cleavage of pro-apoptotic proteins was dramatically increased after SRP exposure. SRP treatment also increased the activities of AMPK and JNK pathways, and inhibited the phosphorylation expression level of STAT3 in K562 cells. Inhibition of the AMPK pathway blocked the activation of JNK by SRP, indicating that SRP regulated the expression of JNK dependent oon the AMPK pathway. Furthermore, inhibition of the latter significantly conferred resistance to SRP pro-apoptotic activity, suggesting involvement of the AMPK pathway in induction of apoptosis. Pretreatment with a STAT3 inhibitor also augmented SRP induced growth inhibition and cell apoptosis, further confirming roles of the STAT3 pathway after SRP treatment. Conclusions: Our results demonstrated that SRP induce cell apoptosis through AMPK activation and STAT3 inhibition in K562 cells. This suggests the possibility of further developing SRP as an alternative treatment option, or perhaps using it as adjuvant chemotherapeutic agent for chronic myeloid leukemia therapy.

Cantharidin Overcomes Imatinib Resistance by Depleting BCR-ABL in Chronic Myeloid Leukemia

  • Sun, Xiaoyan;Cai, Xueting;Yang, Jie;Chen, Jiao;Guo, Caixia;Cao, Peng
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.869-876
    • /
    • 2016
  • Cantharidin (CTD) is an active compound isolated from the traditional Chinese medicine blister beetle and displayed anticancer properties against various types of cancer cells. However, little is known about its effect on human chronic myeloid leukemia (CML) cells, including imatinib-resistant CML cells. The objective of this study was to investigate whether CTD could overcome imatinib resistance in imatinib-resistant CML cells and to explore the possible underlying mechanisms associated with the effect. Our results showed that CTD strongly inhibited the growth of both imatinib-sensitive and imatinib-resistant CML cells. CTD induced cell cycle arrest at mitotic phase and triggered DNA damage in CML cells. The ATM/ATR inhibitor CGK733 abrogated CTD-induced mitotic arrest but promoted the cytotoxic effects of CTD. In addition, we demonstrated that CTD downregulated the expression of the BCR-ABL protein and suppressed its downstream signal transduction. Real-time quantitative PCR revealed that CTD inhibited BCR-ABL at transcriptional level. Knockdown of BCR-ABL increased the cell-killing effects of CTD in K562 cells. These findings indicated that CTD overcomes imatinib resistance through depletion of BCR-ABL. Taken together, CTD is an important new candidate agent for CML therapy.

Amygdalin Modulates Cell Cycle Regulator Genes in Human Chronic Myeloid Leukemia Cells

  • Park, Hae-Jeong;Baik, Haing-Woon;Lee, Seong-Kyu;Yoon, Seo-Hyun;Zheng, Long-Tai;Yim, Sung-Vin;Hong, Seon-Pyo;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.159-165
    • /
    • 2006
  • To determine the anticancer effect of D-amygdalin (D-mandelinitrole-${\beta}$-D-gentiobioside) in human chronic myeloid leukemia cells K562, we profiled the gene expression between amygdalin treatment and control groups. Through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of D-amygdalin was $57.79{\pm}1.83%$ at the concentration of 5 mg/mL for 24 h. We performed cDNA microarray analysis and compared the gene expression profiles between D-amygdalin (5 mg/mL, 24 h) treatment and control groups. Among the genes changed by D-amygdalin, we paid attention to cell cycle-related genes, and particularly cell cycle regulator genes; because arrest of cell cycle processing was ideal tactic in remedy for cancer. In our data, expressions of cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), ataxia telangiectasia mutated (includes complementation groups A, C, and D) (ATM), cyclin-dependent kinase inhibitor 1C (p57, Kip2) (CDKN1C), and CHK1 checkpoint homolog (CHEK1, formally known as CHK1) were increased, while expressions of cyclin-dependent kinase 2 (CDK2), cell division cycle 25A (CDC25A), and cyclin E1 (CCNE1) were decreased. The pattern of these gene expressions were confirmed through RT-PCR. Our results showed that D-amygdalin might control cell cycle regulator genes and arrest S phase of cell cycle in K562 cells as the useful anticancer drug.

Hypoxia-inducible factor 1α inhibitor induces cell death via suppression of BCR-ABL1 and Met expression in BCR-ABL1 tyrosine kinase inhibitor sensitive and resistant chronic myeloid leukemia cells

  • Masanobu Tsubaki;Tomoya Takeda;Takuya Matsuda;Akihiro Kimura;Remi Tanaka;Sakiko Nagayoshi;Tadafumi Hoshida;Kazufumi Tanabe;Shozo Nishida
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.78-83
    • /
    • 2023
  • Chronic myeloid leukemia (CML) has a markedly improved prognosis with the use of breakpoint cluster region-abelson 1 (BCR-ABL1) tyrosine kinase inhibitors (BCR-ABL1 TKIs). However, approximately 40% of patients are resistant or intolerant to BCR-ABL1 TKIs. Hypoxia-inducible factor 1α (HIF-1α) is a hypoxia response factor that has been reported to be highly expressed in CML patients, making it a therapeutic target for BCR-ABL1 TKI-sensitive CML and BCR-ABL1 TKI-resistant CML. In this study, we examined whether HIF-1α inhibitors induce cell death in CML cells and BCR-ABL1 TKI-resistant CML cells. We found that echinomycin and PX-478 induced cell death in BCR-ABL1 TKIs sensitive and resistant CML cells at similar concentrations while the cell sensitivity was not affected with imatinib or dasatinib in BCR-ABL1 TKIs resistant CML cells. In addition, echinomycin and PX-478 inhibited the c-Jun N-terminal kinase (JNK), Akt, and extracellular-regulated protein kinase 1/2 (ERK1/2) activation via suppression of BCR-ABL1 and Met expression in BCR-ABL1 sensitive and resistant CML cells. Moreover, treatment with HIF-1α siRNA induced cell death by inhibiting BCR-ABL1 and Met expression and activation of JNK, Akt, and ERK1/2 in BCR-ABL1 TKIs sensitive and resistant CML cells. These results indicated that HIF-1α regulates BCR-ABL and Met expression and is involved in cell survival in CML cells, suggesting that HIF-1α inhibitors induce cell death in BCR-ABL1 TKIs sensitive and resistant CML cells and therefore HIF-1α inhibitors are potential candidates for CML treatment.