• Title/Summary/Keyword: chloroplast number

Search Result 53, Processing Time 0.019 seconds

Increase in the Chlorophyll Contents by Over-expression of GmNAP1 Gene in Arabidopsis Plant (애기장대에서 GmNAP1의 과발현으로 인한 엽록소 함량 증가)

  • Park, Phun-Bum;Ahn, Chul-Hyun
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1563-1568
    • /
    • 2010
  • In the course of a research concerning the molecular mechanism of hypocotyl elongation that occurs during soybean seedling growth in darkness, we have generated a number of ESTs from a cDNA library prepared from the hypocotyls of dark-grown soybean seedlings. Comparison of the ESTs assigned a cDNA clone as a putative plastidic ATP-binding-cassette (ABC) protein homologue. The soybean GmNAP1 protein contains an N-terminal transit peptide which targets it into the chloroplast. The transcription level of the GmNAP1 gene was investigated under continuous red light, continuous far-red light, and complete darkness. The main function of this NAP1 protein is the transport of protoporphyrin IX which is the precursor of chlorophyll from the cytoplasm to the chloroplast. The GmNAP1 gene was transferred into the Arabidopsis under the CaMV 35S promoter. The chlorophyll level of this transgenic Arabidopsis plant was much higher than the chlorophyll level of the wild type Arabidopsis plant.

PCR-based markers to select plastid genotypes of Solanum acaule (Solanum acaule 색소체 유전자형 선발을 위한 특이적 분자마커 개발)

  • Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.178-186
    • /
    • 2022
  • The tetraploid Solanum acaule is a wild potato species from Bolivia widely used for potato breeding because of its diverse attractive traits, including resistance to frost, late blight, potato virus X, potato virus Y, potato leafroll virus, potato spindle tuber viroid, and cyst nematode. However, the introgression of useful traits into cultivated potatoes via crossing has been limited by differences in endosperm balance number between species. Somatic fusion could be used to overcome sexual reproduction barriers and the development of molecular markers is essential to select proper fusion products. The chloroplast genome of S. acaule was sequenced using next-generation sequencing technology and specific markers for S. acaule were developed by comparing the obtained sequence with those of seven other Solanum species. The total length of the chloroplast genome is 155,570 bp, and 158 genes were annotated. Structure and gene content were very similar to other Solanum species and maximum likelihood phylogenetic analysis with 12 other species belonging to the Solanaceae family revealed that S. acaule is very closely related to other Solanum species. Sequence alignment with the chloroplast genome of seven other Solanum species revealed four InDels and 79 SNPs specific to S. acaule. Based on these InDel and SNP regions, one SCAR marker and one CAPS marker were developed to discriminate S. acaule from other Solanum species. These results will aid in exploring evolutionary aspects of Solanum species and accelerating potato breeding using S. acaule.

Agronomic Characteristics and Chloroplast Morphology of a Pale-green Leaf Line in Rice (벼 연녹색잎 유전자계통의 농업형질 및 엽록체 구조)

  • Won, Yong-Jae;Song, Moon-Tae;Yang, Chang-In;Kim, Hong-Yeol;Moon, Huhn-Pal
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.3
    • /
    • pp.199-202
    • /
    • 2000
  • The leaf color varies with the contents of pigments, especially chlorophylls and carotenoids. Teichung 65 (T.65), a japonica rice, with pgl(pale-green leaf) gene exhibits pale green color on the whole plant from seedling to harvest. This study conducted to evaluate the agronomic characters and examine the chloroplasts of 'pgl' plants in parents and BC$_1$F$_2$ of T.65(pgl) xSuweon ${345}^2$. The average grain yield of pale-green-leaf individuals in F$_2$ was the same as T.65(pgl) but that of green-leaf individuals was much higher than that of Suweon 345. The contents of chlorophyll a(Ca), chlorophyll b(Cb) and total chlorophyll content(Ct) of T.65(pgl) in flag leaf were lower than those of Suweon 345, but the Ca/Cb ratio of T.65(pgl) was higher than that of Suweon 345 during from 15 days after heading (DAH) to 60 DAH. The SPAD value of T.65(pgl) in flag leaf was lower than that of Suweon 345, but that in the second and the third leaves was similar to that of Suweon 345. The SPAD value of pale-green-leaf individual group was lower than that of green individual group in upper three leaves. The structural difference of chloroplasts in flag leaf between T.65(pgl) and Suweon 345 through TEM at 20 DAH was not detected, but the number of osmium granules in chloroplast of T.65(pgl) were higher than that of Suweon 345.

  • PDF

Changes in Chloroplast Ultrastructure and Thylakoid Membrane Proteins by High Light in Ginseng Leaves

  • Woo Kap Kim
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.285-292
    • /
    • 1994
  • Ultrastructural changes in Panax ginseng C. A. Meyer mesophyll chloroplasts and variation of thylakoid membrane protein in responce to the light intensity were studied in leaves of two-y-old plants exposed to two different light intensities under field coditions. The leaves were allowed to function for three months after emergence under two contrasting light conditions. The ginseng chloroplasts of 5% light were filled with highly stacked grana of condensely arrayed thylakoids, so that the stroma space was hardly observed. In contrast, chloroplasts from leaves at 100% sunlight had fewer thylakoid membranes and smaller grana stacks. The number of osmiophilic globules increased. Total Chl content and Chl b content were lower at 100% sunlight than 5% sunlight. The thylakoid membrane proteins in the leaves grown at 100% sunlight showed lower CPIa, LHCII and CP29 than those with 5% sunlight. This effect was most obvious for LHCII. Polypeptides showed major bands at 90, 64, 29-30, 22 and 14 kD, and minor bands at 59, 58, 54, 52, 49, 46, 44, 35, 23, 21 and 18-19 kD. All these bands were lower in intensity in the leaves exposed to 100% sunlight. Moreover, the bands at 58-59, 46-47 and 23 kD disappeared.

  • PDF

Allium ulleungense (Amaryllidaceae), a new species endemic to Ulleungdo Island, Korea

  • CHOI, Hyeok-Jae;YANG, Sungyu;YANG, Jong-Cheol;FRIESEN, Nikolai
    • Korean Journal of Plant Taxonomy
    • /
    • v.49 no.4
    • /
    • pp.294-299
    • /
    • 2019
  • Allium ulleungense (subg. Anguinum, Amaryllidaceae), from Ulleungdo Island, Korea, is described as a new species. It is clearly distinguished from its close relatives, A. microdictyon and A. ochotense, by its broader leaves and larger whitish perianth and by its diploid chromosome number, which is 2n = 2x = 16. The lengths of the chromosomes range from 11.3 to 15.75 ㎛. Molecular phylogenetic analyses using nuclear and chloroplast markers also clearly indicate that A. ulleungense is genetically distinct from other species of the subg. Anguinum.

Studies on the Anther Culture of Rice 2. Histological observation of haploid callus inoculated on differentiation medium (벼의 약배양에 관한 연구 2. 분화배지에 이식된 Haploid Callus의 발생 및 분화)

  • 한창열
    • Journal of Plant Biology
    • /
    • v.13 no.3
    • /
    • pp.17-19
    • /
    • 1970
  • Histological observation of micropore-originated haploid rice callus was reported previously. Present study was attempted to clarify the growth or development of the calli when they were transferred to differentiation media prepared exclusively for differentiation of plantlets. When the callus was transferred to differentiation medium, the cells and tissues became radially elongated. Meristematic tissues were present but few in number, and their structures were quite different from those grown in the propagaton medium. Differentiation of tracheid, chloroplast, and epidermis-like cell layer, and formation of gap in the callus tissue were more conspicuous in differentiation media. Approximately ten days after transfer of callus to differentiation medium, plantlet was formed.

  • PDF

Phylotranscriptomics of the Subfamily Apioideae (Apiaceae) (전사체 데이터에 의한 산형아과 (Apioideae)의 계통과 적응진화)

  • Eun Mi Lee;SeonJoo Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.11-11
    • /
    • 2023
  • Due to the abundance of information in Nuclear DNA, it has a magnificent phylogenetic resolution. Moreover, because they show biparental inheritance, it has proven to be superior to organelle DNA, which has a limited number of genes and only shows maternal lineage. In particular, the transcriptome, which includes much nuclear DNA but is relatively inexpensive to analyze, can provide valuable insights into evolution through selection analysis and enable gene function research. This study's dataset includes 45 transcriptomes (16 generated for this study). It aims to explore the evolutionary history of Apioideae by comparing the results of the phylogenetic analysis with gene tree discordance and chloroplast phylogeny. The results confirmed the taxonomic positions of Peucedanum terebinthaceum, Ligusticum tachiroei, and Cymopterus melanotilingia and proposed a genus change for Glehnia littoralis. High gene tree discordances were identified in recently diverged clades, suggesting frequent hybridization and introgression. In the most recently diverged tribe of Selineae, the highest number of PSGs (positively selected genes) has been confirmed, which is inferred to be due to the geological and climatic diversity of their originated habitat, Central Asia. These genes include those related to responses to growth and drought, oxidative, and salt stress. In particular, the CYP97A gene confirmed as PSGs in Bupleurum latissimum is inferred to be a result of adaptation to the light-limited environment of Ulleungdo Island, as it is associated with the efficiency of photosynthesis.

  • PDF

A new naturalized plant in Korea: Carex molestiformis Reznicek and Rothrock (Cyperaceae) (한반도 신귀화식물: 가는타래사초 (사초과))

  • KO, Seungwon;SHIM, Sang Deog;HYUN, Jong Young;KIM, Joo-Hwan
    • Korean Journal of Plant Taxonomy
    • /
    • v.50 no.3
    • /
    • pp.318-326
    • /
    • 2020
  • We found an unrecorded species, Carex molestiformis Reznicek & Rothrock, in Byeokparyeong, Daehwa-myeon, Pyeongchang-gun, Gangwon-do, South Korea. This species is native to southern parts of the United States (ca. 11 states, including Arkansas, Missouri, and Oklahoma). These plants are usually distributed densely in stream flood plains, bottomlands, stream banks, and along roadsides. Belonging to section Ovales Kunth, perennial herbs with gynecandrous spikes, C. molestiformis is closely related to C. maackii Maxim. and C. scoparia Willd. and is distinguished from them by the number (2-4) of spikes in each inflorescence and the width (2.63.4 mm) and number (69) of veins of perigynia. A new Korean name of C. molestiformis 'Ga-Neun-Ta-Rae-Sa-Cho' was given, as it has slender overall appearance compared with C. maackii (Ta-Rae-Sa-Cho). We also provide a description, illustrations, photographs and a key of related taxa in Korea. We compared three DNA barcode region (chloroplast DNA matK, ndhF and nuclear ribosomal DNA internal transcribed spacer) sequences from C. molestiformis with those of C. maackii and C. scoparia, determining eight species-specific single nucleotide polymorphism sites for C. molestiformis.

Morphological and Cytogenetic Analysis of Colchicine-induced Tetraploids of Fallopia multiflolra Haraldson (Colchicine 처리에 의해 유기된 4배체 하수오의 형태 및 세포유전학적 특성)

  • Kim, Ki Hyun;Youn, Cheol Ku;Kim, In Jae;Lee, Kyung Ja;Kim, Young Ho;Hong, Seong Tack;Woo, Sun Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.362-369
    • /
    • 2018
  • Background: For stable induction of tetraploidy in Fallopia multiflora Haraldson, colchicine was treated to establish the condition of induction and investigated the morphological and cytogenetic traits of the tetraploid plants obtained compared to those of diploid ones. Methods and Results: For the induction of tetraploidy, F. multiflora plants were soaked in aqueous solutions of colchicine at various concentration (0.1, 0.5, and 1.0%). After this, 2% dimethyl sulfoxide (DMSO) was added at room temperature on a shaker set at 150 rpm for periods of 12, 24, and 48 h. The induction rate of tetraploids appeared to be the highest in plants treated with 0.5% colchicine for 24 h. As the colchicine concentration and soaking time increased above these levels, the growing tip of the roots did not develop and they began to rot. When compared to diploid plants, tetraploids differed greatly in various characteristics, including the sizes and shapes of the leaves, fruits, flowers and roots. The induced tetraploid F. multiflora had larger guard cells, and chloroplasts, increased number of chloroplast in the guard cells and decreased stomatal densities. Conclusions: When colchicine induced plants for tetraploid, it can be distinguished from diploids, in various characteristics such as morphological changes as stomatal size, number of chloroplasts per guard cell, number of chromosomes and flow cytometry. Therefore, it proved that these methods are suitable, quick and easy methods for the identification of the ploidy level of F. multiflora.

An Analysis of the Heritability of Phenotypic Traits Using Chloroplast Genomic Information of Legume Germplasms (엽록체 유전정보를 이용한 두류 유전자원 형태적 형질의 유전력 분석)

  • Dong Su Yu;Yu-Mi Choi;Xiaohan Wang;Manjung Kang
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.369-380
    • /
    • 2023
  • Developing and breeding improved legume-based food resources require collecting useful genetic traits with heritability even though requiring some time-consuming, costly, and labor intensive. We attempted to infer heritability of nine genetic traits-days to flowering, days to maturity, period from flowering to maturity, the number of seeds per pod, 100-seeds weight, and four contents such as crude protein, crude oil, crude fiber, and dietary fiber-using 455 homologous chloroplast gene sets of six species of legumes. Correlation analysis between genetic trait differences and phylogenetic distance of homologous gene sets revealed that days to flowering, the number of seeds per pod, and crude oil content were influenced by genetic factors rather than environmental factors by 62.86%, 69.45%, 57.14% of correlated genes (P-value ≤ 0.05) and days to maturity showed intermediate genetic effects by 62.42% (P-value ≤ 0.1). The period from flowering to maturity and 100-seeds weight showed different results compared to those of some previous studies, which may be attributed to highly complicated internal (epistatic or additive gene effects) and external effects (cultural environment and human behaviors). Despite being slightly unexpected, our results and method can widely contribute to analyze heritability by including genetic information on mitochondria, nuclear genome, and single nucleotide polymorphisms.