• Title/Summary/Keyword: chlorophyll a/b binding proteins

Search Result 12, Processing Time 0.014 seconds

Molecular Characterization of a cDNA Encoding Chlorophyll a/b Binding Protein (Cab) from Panax ginseng C. A. Meyer (고려인삼 Chlorophyll a/b Binding Protein(Cab) 유전자의 동정 및 분자적인 특성분석)

  • In Jun Gyo;Lee Bum Soo;Youn Jae-Ho;Son Hwa;Kim Se Young;Yang Deok Chun
    • Korean Journal of Plant Resources
    • /
    • v.18 no.3
    • /
    • pp.441-449
    • /
    • 2005
  • Photo system II (PSII) is one of the two photosynthetic reaction centers in the chloroplast of higher plants. The chlorophyll a/b-light harvesting complex serves primarily as an antenna for PSII. We isolated a cDNA that encodes a chlorophyll a/b-binding protein (Cab) from Panax ginseng. The small subunit consists of 935 nucleotides long and has an open reading frame of 795 bp with the deduced amino acid of 265 residues (pI 5.63), 28.6 kDa. The deduced amino acid sequence matched to the previously reported Cab genes. Their degree of amino acid identity ranged from 68 to $92\%$. Phylogenetic analysis based on the amino acid residues was showed that the ginseng Cab gene was grouped with P. persica (AAC34983), A. thaliana (AAD28771), G. hirsutum (CAA38025), G. max (AAL29886), and V. radiate (AAF89205).

REPRESSION OF Lhcb GENES FOR CHLOROPHYLL a/b-BINDING PROTEINS UNDER HIGH-LIGHT CONDITIONS IN Chlamydomonas

  • Haruhiko Teramoto;Akira Nakamori;Jun Minagawa;Ono, Taka-aki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.373-375
    • /
    • 2002
  • Lhcb genes encoding light-harvesting chlorophyll-a/b binding (LHC) proteins of photosystem (PS) II were comprehensively characterized using the expressed sequence tag (EST) databases in the green alga, Chlamydomonas reinhardtii. The gene family was composed of eight Lhcb genes including four new genes, which were isolated and sequenced. The effects of light intensity on the levels of mRNAs accumulation of multiple Lhcb genes were studied under various conditions. The results indicate that Lhcb genes are coordinately regulated in response to light conditions, and repressed when the input light energy exceeded the requirement for $CO_2$ assimilation. The effects of high light on the expression of the Lhcb genes observed in the presence of an electron transport inhibitor, DCMU, and in mutants deficient in photosynthetic reaction centers suggest the presence of two alternative mechanisms for regulating the genes expression under high-light conditions.

  • PDF

Effect of ABA on Disassembly of Chloroplast during Senescence in Detached Leaves of Zea mays

  • Lee, Dong-Hee;Seo, Young-Hee;Kim, Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.177-188
    • /
    • 1999
  • The effect of ABA on the chloroplast disassembly of Zea mays was investigated by measuring the changes in the relative distribution of chlorophyll(Chl) between the Chl-protein complexes in ABA treated and untreated sensecting leaves. The reaction center(RC)-light harvesting complex(LHC) regions were rapidly disassembled in the late stage of dark-induced senescence. Plus, during dark-induced senescence, the disassembly of a reaction center of P700 apoproteins containing mainly Chl a was faster than that of a reaction center of LHCI apoproteins containing both Chl a and Chl b. The increase in the relative distribution of Chl-protein complexes in the RC-Core2 in the late stage of senescence was due to the accumulation of core complexes such as CP47/43 and reaction centers including D1/D2 apoproteins disassembled from the RC-Corel containing the dimer of D1/D2 apoproteins. The LHCII region was more stable than the other Chl-protein complexes throughout leaf senscence. Accordingly, it is suggested that the preferential breakdown of Chl a gives rise to the disassembly of Chl a-binding proteins, particularly reaction centers and core complexes during dark-induced senescence, plus the primary target of the photosynthetic apparatus in sensecing leaves would seem to be Chl a along with the proteins associated with Chl a. The application of ABA promoted the disassembly of the P700 apoproteins in the PSI reaction center and the dimer of D1/D2 apoproteins, and the conversion of the trimeric LHCII apoprotein to the monometirc LHCII apoprotein during the middle stage of leaf senescence, thereby suggesting that ABA accelerates the disassembly of both Chl a-binding and Chl a+b-binding proteins, particularly Chl a-binding proteins during the middle stage of leaf senescence.

  • PDF

Analysis of Pigments and Thylakoid Membrane Proteins in Photosystem I - Mutants from Synechocystis sp. PCC6803 (Synechocystis sp. PCC6803을 이용한 Photosystem I- mutants의 색소 및 틸라코이드막 단백질 분석)

  • 전은경;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.1
    • /
    • pp.45-58
    • /
    • 1997
  • Pigments and thylakoid membrane proteins were investigated in wild type and PS I- mutants from Synechocystis sp. PCC6803 Comparing morphological features, B2 was less fluorescent than the other strains. The contents of chlorophyll a were propotional to the FNR activity in thylakoid membrane. The FNR activity of mutants was lower than that of wild type. In the result of pigments analysis, mutants had smaller cholophyll a than that of wild type. The major carotenoid was found to he $\beta$-caroene, but aeaxanthin was barely detected in thylakoid membrane of mutants. The polypeptide, 14.8kD was detected by electrophoresis in mutants. It was considered to be the modification of 15.4kD in wild type. Membrane polypeptides of 17.6 and 19.7kD were not detected in mutants. In the result of western blotting, subunit I was detected in all strains, but subunit II was barely detected in mutants. Subunit II was not detected in B2 at all. In view of the results so far achieved, the changes of contents of chlorophyll and zeaxanthin were affected by the defficiency or modification of functional domain in subunit I. Also the modification in subunit I affected the subunit II- binding site in PS I. As the result, efficiency of photosynthesis was decreased. Key words: Synechoystis sp. PCC6803, PS I - mutant, Photosynthetic efficiency, Pigment,Thylakoid membrane proteins, Subunit I, II.

  • PDF

Interaction Study of Soybean mosaic virus Proteins with Soybean Proteins using the Yeast-Two Hybrid System

  • Seo, Jang-Kyun;Hwang, Sung-Hyun;Kang, Sung-Hwan;Choi, Hong-Soo;Lee, Su-Heon;Sohn, Seong-Han;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • Interactions between viral proteins and host proteins are essential for virus replication. Especially, translation of viral genes completely depends on the host machinery. In potyviruses, interactions of genome-linked viral protein (VPg) with host translation factors including eIF4E, eIF(iso)4E, and poly(A)-binding protein (PABP) has previously been characterized. In this study, we investigated interactions between Soybean mosaic virus (SMV) viral proteins and host translation factors by yeast two-hybrid system. SMV VPg interacted with eIF4E, eIF(iso)4E, and PABP in yeast two-hybrid system, while SMV helper component proteinase (HC-pro) interacted with neither of those proteins. The interaction between SMV NIb and PABP was also detected. These results are consistent with those reported previously in other potyviruses. Interestingly, we found reproducible and specific interactions between SMV coat protein (CP) and PABP. Deletion analysis showed that the region of CP comprising amino acids 116 to 206 and the region of PABP comprising amino acids 520 to 580 are involved in CP/PABP interactions. Soybean library screening with SMV NIb by yeast two-hybrid assay also identified several soybean proteins including chlorophyll a/b binding preprotein, photo-system I-N subunit, ribulose 1,5-biphosphate carboxylase, ST-LSI protein, translation initiation factor 1, TIR-NBS type R protein, RNA binding protein, ubiquitin, and LRR protein kinase. Altogether, these results suggest that potyviral replicase may comprise a multi-protein complex with PABP, CP, and other host factors.

Proteome Analysis of the Young Spikelets of Photoperiod-Sensitive Rice Mutant Treated in Different Photoperiods

  • Pandeya, Devendra;Song, You-Chun;Kim, Sung-Su;Suh, Hak-Soo;Kang, Sang-Gu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.281-288
    • /
    • 2007
  • Photoperiod sensitive genetic male sterile (PGMS) rice is sterile mutant controlled by photoperiod. A PGMS mutant 920S was sterile grown under long-day (LD) photoperiod (14 h light/10 h dark) but fertile grown under short-day (SD) photoperiod (10 h light/14 h dark). Proteome analysis revealed that 12 protein spots were differentially expressed in the spikelets of 920S plants either treated with LD or SD photoperiod. Among these proteins, three proteins including chlorophyll a/b binding protein, vacuolar ATPase ${\beta}-subunit,\;{\alpha}-tubulin$ and an unknown protein were more than three-fold abundant in the spikelet of the SD-treated plants than those of the LD-treated plants. On the other hand, eight proteins including acetyl transferase, 2, 3- biphosphoglycerate, aminopeptidase N, pyruvate decarboxylase, 60S acidic ribosomal protein and three unknown protein spots were more abundant in the spikelets of the LD-treated plants than those of the SD-treated plants. The results suggest that the observed proteins may be involved in sterile or fertile pollen development under LD or SD photoperiod respectively in the PGMS mutant rice.

Proteomics Analysis of Early Salt-Responsive Proteins in Ginseng (Panax ginseng C. A. Meyer) Leaves (초기 염류 스트레스 반응 인삼 잎 단백질체 분석)

  • Kim, So Wun;Min, Chul Woo;Gupta, Ravi;Jo, Ick Hyun;Bang, Kyong Hwan;Kim, Young-Chang;Kim, Kee-Hong;Kim, Sun Tae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.5
    • /
    • pp.398-404
    • /
    • 2014
  • Salt stress is one of the major abiotic stresses affecting the yield of ginseng (Panax ginseng C. A. Meyer). The objective of this study was to identify bio-marker, which is early responsive in salt stress in ginseng, using proteomics approach. Ginseng plants were exposed to 5 ds/m salt concentration and samples were harvested at 0, 6, 12 and 18 hours after exposure. Total proteins were extracted from ginseng leaves treated with salt stress using Mg/NP-40 buffer and were separated on high resolution 2-DE. Approximately $1003{\pm}240$ (0 h), $992{\pm}166$ (6 h), $1051{\pm}51$ (12 h) and $990{\pm}160$ (18 h) spots were detected in colloidal CBB stained 2D maps. Among these, 8 spots were differentially expressed and were identified by using MALDI-TOF/TOF MS or/and LC-MS/MS. Ethylene response sensor-1 (spot GL 1), nucleotide binding protein (spot GL 2), carbonic anhydrase-1 (spot GL 3), thylakoid lumenal 17.9 kDa protein (spot GL 4) and Chlorophyll a/b binding protein (spot GL 5, GL 6) were up-regulated at the 12 and 18 hour, while RuBisCO activase B (spot GL 7) and DNA helicase (spot GL 8) were down-regulated. Thus, we suggest that these proteins might participate in the early response to salt stress in ginseng leaves.

Comparative transcriptome analysis of heat stress responsiveness between two contrasting ginseng cultivars

  • Jayakodi, Murukarthick;Lee, Sang-Choon;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.572-579
    • /
    • 2019
  • Background: Panax ginseng has been used in traditional medicine to strengthen the body and mental well-being of humans for thousands of years. Many elite ginseng cultivars have been developed, and ginseng cultivation has become well established during the last century. However, heat stress poses an important threat to the growth and sustainable production of ginseng. Efforts have been made to study the effects of high temperature on ginseng physiology, but knowledge of the molecular responses to heat stress is still limited. Methods: We sequenced the transcriptomes (RNA-Seq) of two ginseng cultivars, Chunpoong (CP) and Yunpoong (YP), which are sensitive and resistant to heat stress, respectively, after 1- and 3-week heat treatments. Differential gene expression and gene ontology enrichment along with profiled chlorophyll contents were performed. Results: CP is more sensitive to heat stress than YP and exhibited a lower chlorophyll content than YP. Moreover, heat stress reduced the chlorophyll content more rapidly in CP than in YP. A total of 329 heat-responsive genes were identified. Intriguingly, genes encoding chlorophyll a/b-binding proteins, WRKY transcription factors, and fatty acid desaturase were predominantly responsive during heat stress and appeared to regulate photosynthesis. In addition, a genome-wide scan of photosynthetic and sugar metabolic genes revealed reduced transcription levels for ribulose 1,5-bisphosphate carboxylase/oxygenase under heat stress, especially in CP, possibly attributable to elevated levels of soluble sugars. Conclusion: Our comprehensive genomic analysis reveals candidate loci/gene targets for breeding and functional studies related to developing high temperature-tolerant ginseng varieties.

Effect of Elevated Ultraviolet-B Radiation on Yield and Differential Expression of Proteome in Perilla (perilla frutescens L.) (잎들깨 수량과 단백질체 발현에 미치는 UV-B의 영향)

  • Hong, Seung-Chang;Hwang, Seon-Woong;Chang, An-Cheol;Shin, Pyung-Gyun;Jang, Byoung-Choon;Lee, Chul-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • Plastichouse cultivation for crops and vegetables in the winter has been widely popularized in Korea. In the vinylhouse Ultraviolet B penetration is lower than in the field, and so some problems, as plant overgrowth and outbreak of disease, occurred frequently. The effect of artificial supplement ultraviolet B $(UV-B:280{\sim}320nm)$ radiation on the physiological responses and yield of perilla (perilla frutescens) was investigated UV-B ray was radiated on perilla with the 10th leaf stage at the distance of 90, 120 and 150 cm from the plant canopy for 30 days after planting in the vinylhouse. The production of fresh perilla leaves was high in the order of plastic house, ambient+50% of supplemental UV-B, ambient ambient+100% of supplemental UV-B. Enhanced UV-B radiation affected the intensity of thirty-three proteins in 2-dimensional electrophoretic analysis of proteins and ten proteins out of them seemed to be responsive to UV-B : a protein was, ATP synthase CF1 alpha chain, down regulated and nine proteins (Chlorophyll a/b bindng protein type I, Chlorophyll a/b binding protein type II precursor, Photosystem I P700 chlorophyll a apoprotein A2, DNA recombination and repair protein recF, Galactinol synthase, S-adenosyl-L-methionine, Heat shock protein 21, Calcium-dependent protein kinase(CDPK)-like, Catalase) were up-regulated.

Selective Interaction Between Chloroplast β-ATPase and TGB1L88 Retards Severe Symptoms Caused by Alternanthera mosaic virus Infection

  • Seo, Eun-Young;Nam, Jiryun;Kim, Hyun-Seung;Park, Young-Hwan;Hong, Seok Myeong;Lakshman, Dilip;Bae, Hanhong;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.58-67
    • /
    • 2014
  • The multifunctional triple gene block protein 1 (TGB1) of the Potexvirus Alternanthera mosaic virus (AltMV) has been reported to have silencing suppressor, cell-to-cell movement, and helicase functions. Yeast two hybrid screening using an Arabidopsis thaliana cDNA library with TGB1 as bait, and co-purification with TGB1 inclusion bodies identified several host proteins which interact with AltMV TGB1. Host protein interactions with TGB1 were confirmed by biomolecular fluorescence complementation, which showed positive TGB1 interaction with mitochondrial ATP synthase delta' chain subunit (ATP synthase delta'), light harvesting chlorophyll-protein complex I subunit A4 (LHCA4), chlorophyll a/b binding protein 1 (LHB1B2), chloroplast-localized IscA-like protein (ATCPISCA), and chloroplast ${\beta}$-ATPase. However, chloroplast ${\beta}$-ATPase interacts only with $TGB1_{L88}$, and not with weak silencing suppressor $TGB1_{L88}$. This selective interaction indicates that chloroplast ${\beta}$-ATPase is not required for AltMV movement and replication; however, TRV silencing of chloroplast ${\beta}$-ATPase in Nicotiana benthamiana induced severe tissue necrosis when plants were infected by AltMV $TGB1_{L88}$ but not AltMV $TGB1_{L88}$, suggesting that ${\beta}$-ATPase selectively responded to $TGB1_{L88}$ to induce defense responses.