• Title/Summary/Keyword: chlorine treatment

Search Result 445, Processing Time 0.027 seconds

The Surface Characteristics of Chlorinated Wiper Blade Rubber using EPMA (EPMA를 이용한 염소 처리된 와이퍼 블레이드 고무의 표면 특성 연구)

  • Rho, Seung-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3292-3297
    • /
    • 2014
  • The vehicle wiper blade(W/B) to lower the friction coefficient of the rubber surface after the surface treatment with chlorine were investigated. IR spectrum from W/B was used to determine the extent of chlorination of the rubber surface. Coefficient of friction is significantly reduced by the treatment with chlorine. In particular, the more sensitive influence on the initial chlorination. Rubber surface properties with respect to the longitudinal direction of the cutting plane were obtained by EPMA line analysis results. Penetration depth by EPMA chlorine concentration($20.0{\ell}$ of water for 35.0% hydrochloric acid(HCl) $300m{\ell}$ with 5.25% sodium hypochlorite(NaOCl) $400m{\ell}$), the chlorine treatment for 5 minutes was conducted to find that after 1.2 ${\mu}m$.

Effect of Advanced Treatment Process for Residual Chlorine Decay and THM Formation in Water Distribution System (고도처리공정이 관로 내 잔류염소 감소 및 THM 생성에 미치는 영향)

  • Lee, Doo-Jin;Kim, Young-Il;Kim, Sung-Su;Lee, Kyung-Hyuk;Park, Hyun-A
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.419-424
    • /
    • 2007
  • According to increase of consumer's desire for clean tap water, advanced treatment processes include with membrane, ozone, and granular activated carbon(GAC) were introduced. In order to evaluate the effect of advanced treatment processes for residual chlorine decay and trihalomethane(THM) formation in water distribution system, dissolved organic matter(DOC) removal of each advanced treatment process was investigated. The residual chlorine decay and THM formation using bottle tests were also evaluated. $UV_{254}$ removal in all advanced treatment was better than DOC removal. Especially, DOC by ozone treated was removed as 4% in contrast with sand filtered water, but $UV_{254}$ was removed about 17%. This result might be due to convert from hydrophobic DOC to hydrophilic DOC by ozonation. Ozone/GAC process was most effective process for DOC removal. The residual chlorine decay constants in treated water by sand filtration, ozonation, GAC adsorption, and ozone/GAC processes were 0.0230, 0.0307, 0.0117 and 0.0098 $hr^{-1}$, respectively. The sand filtered water was produced 81.8 ${\mu}g/L$ of THM after 190 hours of reaction time, as the treated water by ozone, GAC, and Ozone/GAC was less produced 6.0, 26.2, 30.3% in contrast with sand filtered water, respectively. Consequently, the durability of residual chlorine and reduction of THM formation were improved by advanced treatment processes.

Survival of Escherichia coli O157:H7 and Salmonella typhimurium Inoculated on Chicken by Aqueous Chlorine Dioxide Treatment

  • Hong, Yun-Hee;Ku, Kyoung-Ju;Kim, Min-Ki;Won, Mi-Sun;Chung, Kyung-Sook;Song, Kyung-Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.742-745
    • /
    • 2008
  • Inactivation of Escherichia coli O157:H7 and Salmonella typhimurium was evaluated on inoculated chicken by aqueous chlorine dioxide ($CIO_2$) treatment. Chicken samples were inoculated with 6-7 log CFU/g of Escherichia coli O157:H7 and Salmonella typhimurium, respectively. The chicken samples were then treated with 0, 50, and 100 ppm of $CIO_2$ solution and stored at $4{\pm}1^{\circ}C$. Aqueous $CIO_2$ treatment decreased the populations of the pathogenic bacteria on the chicken breast and drumstick. In particular, 100 ppm $CIO_2$ treatment on the chicken breast and drumstick reduced Escherichia coli O157:H7 and Salmonella typhimurium by 1.00-1.27 and 1.37-1.44 log CFU/g, respectively. Aqueous $CIO_2$ treatment on the growth of the bacteria was continuously in effect during storage, resulting in the decrease of the populations of Escherichia coli O157:H7 and Salmonella typhimurium. These results suggest that aqueous $CIO_2$ treatment should be useful in improving the microbial safety of chicken during storage.

Effect of Aqueous Chlorine Dioxide Treatment on the Microbial Growth and Qualities of Iceberg Lettuce during Storage

  • Kim, Yun-Jung;Lee, Seung-Hwan;Song, Kyung-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.239-243
    • /
    • 2007
  • Effects of aqueous chlorine dioxide ($ClO_2$) treatment on the microbial growth and the quality of iceberg lettuce during storage were examined. Lettuce samples were treated with 0, 5, 10, and 50 ppm of $ClO_2$ solution and stored at $4^{\circ}C$. Aqueous $ClO_2$ treatment significantly decreased the populations of total aerobic bacteria, yeasts and molds, and coliforms on the shredded lettuce. Fifty ppm $ClO_2$ treatment reduced the initial populations of total aerobic bacteria, yeasts and molds, and coliforms by 1.77, 1.34, 1.10 log CFU/g, respectively. Aqueous $ClO_2$ treatment caused negligible changes in the Hunter color L, a, and b values during storage. Sensory evaluations exhibited that there were no significant changes among treatments. These results indicate that the aqueous $ClO_2$ treatment can be useful in improving the microbial safety of the iceberg lettuce during storage and extending the shelf life.

Inactivation of Listeria monocytogenes and Campylobacter jejuni in Chicken by Aqueous Chlorine Dioxide Treatment

  • Hong, Yun-Hee;Ku, Gyeong-Ju;Kim, Min-Ki;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.4
    • /
    • pp.279-283
    • /
    • 2007
  • Aqueous chlorine dioxide $(ClO_2)$ treatment was used for the inactivation of Listeria monocytogenes and Campylobacter jejuni in chicken. Chicken breasts and legs were inoculated with $8{\sim}9log\;CFU/g$ of Listeria monocytogenes and Campylobacter jejuni, respectively, and then treated with 0, 50, and 100 ppm of $ClO_2$ solution. Aqueous $ClO_2$ treatment decreased the populations of the pathogenic bacteria on the chicken samples. One hundred ppm $ClO_2$ treatment on the chicken breast and leg reduced the populations of Listeria monocytogenes and Campylobacter jejuni by $0.61{\sim}1.93\;and\;0.99{\sim}1.21log\;CFU/g$, respectively. Aqueous $ClO_2$ treatment affected the microbial growth during storage at $4^{\circ}C$ by decreasing the initial microbial populations. These results clearly suggest that aqueous $ClO_2$ treatment should be useful in improving the microbial safety of chicken during storage and extending the shelf life.

Aqueous Chlorine Dioxide Treatment Improves the Shelf Life of Panax ginseng C.A. Meyer

  • Chun, Ho-Hyun;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.4
    • /
    • pp.284-288
    • /
    • 2007
  • Effect of aqueous chlorine dioxide $(ClO_2)$ treatment on the quality change of fresh ginseng during storage was examined. Fresh ginseng samples were treated with 0, 50, and 100 ppm of $ClO_2$ solution, respectively, and stored at $4^{\circ}C$. Microbiological data of the fresh ginseng after $ClO_2$ treatment revealed that the populations of total aerobic bacteria, and yeast and mold were significantly reduced with the increase of $ClO_2$ concentration. In particular, the populations of total aerobic bacteria, and yeast and mold in the fresh ginseng decreased by 2.1 and 1.2 log CFU/g at 100 ppm $ClO_2$ treatment, respectively. Aqueous $ClO_2$ treatment improved the color of the fresh ginseng during storage, but there was no significant difference in weight loss during storage among treatments. Sensory evaluation results represented that the qualities of the fresh ginseng treated with aqueous $ClO_2$ during storage were better than those of the control. These results clearly indicate that aqueous $ClO_2$ treatment could be useful in decreasing the microbial growth and extending the shelf life of fresh ginseng.

Development of templated RuO2 nanorod and nanosheet electrodes to improve the electrocatalytic activities for chlorine evolution (전기적 염소 발생 촉매활성을 위한 성형된 루테늄 산화물 나노로드와 나노시트 전극의 개발)

  • Luu, Tran Le;Kim, Choonsoo;Yoon, Jeyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.373-381
    • /
    • 2017
  • $RuO_2$ is a common active component of Dimensionally Stable Anodes (DSAs) for chlorine evolution that can be used in wastewater treatment systems. The recent improvement of chlorine evolution using nanostructures of $RuO_2$ electrodes to increase the treatment efficiency and reduce the energy consumption of this process has received much attention. In this study, $RuO_2$ nanorod and nanosheet electrodes were simply fabricated using the sol-gel method with organic surfactants as the templates. The obtained $RuO_2$ nanorod and nanosheet electrodes exhibit enhanced electrocatalytic activities for chlorine evolution possibly due to the active surface areas, especially the outer active surface areas, which are attributed to the increase in mass transfers compared with a conventional nanograin electrode. The electrocatalytic activities for chlorine evolution were increased up to 20 % in the case of the nanorod electrode and 35% in the case of the nanosheet electrode compared with the nanograin electrode. The $RuO_2$ nanorod 80 nm in length and 20-30 nm in width and the $RuO_2$ nanosheet 40-60 nm in length and 40 nm in width are formed on the surface of Ti substrates. These results support that the templated $RuO_2$ nanorod and nanosheet electrodes are promising anode materials for chlorine evolution in future applications.

Evaluation on the Locations of Powdered Activated Carbon Addition for Improvement of Taste and Odor Removal in Drinking Water Supplies (상수원수 내 이취미 제거효율 향상을 위한 분말활성탄 투입지점의 평가)

  • Kim, Young-Il;Lee, Sang-Jin;Bae, Byung-Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.341-348
    • /
    • 2007
  • The efficiency of powdered activated carbon (PAC) for removing taste and odor (T&O) in drinking water supplies is dependent on the contact time, quality of mixing, and the presence of competing compounds. All of these are strongly influenced by the stage in the treatment process at which the PAC is added. In conventional water treatment plants (WTPs), PAC is commonly added into the rapid mixing basin where chemicals such as coagulants, alkaline chemicals, and chlorine, are simultaneously applied. In order to prevent interference between PAC and other water treatment chemicals, alternative locations for addition of PAC, such as at transmission pipe in the water intake tower or into a separated PAC contactor, were investigated. Whatever the location, addition of PAC apart from other water treatment chemicals was more effective for geosmin removal than simultaneous addition. Among several combinations, the sequence 'chlorine-PAC-coagulant' produced the best result with respect to geosmin removal efficiency. Consequently, when PAC has to be applied to cope with T&O problems in conventional WTPs, it is very important to prevent interference with other water treatment chemicals, such as chlorine and coagulant. Adequate contact time should also be given for adsorption of the T&O compounds onto the PAC. To satisfy these conditions, installation of a separated PAC contactor would be the superior alternative if there is space available in the WTP. If necessary, PAC could be added at transmission pipe in the water intake tower and still provide some benefit for T&O treatment.

Anti-microbial Effects of Washing and Chlorine Treatments on Fresh Fruits (과일류의 염소 소독 농도 및 세척 횟수에 따른 미생물 제거 효과)

  • Park, Jong-Sook;Nam, Eun-Sook;Park, Shin-In
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.2
    • /
    • pp.176-183
    • /
    • 2008
  • This study examined the anti-microbiological effects of chlorine treatment on the surface of fresh fruits, in order to improve microbiological safety in school foodservice operations. Non-peeled fruit(strawberries) and peeled fruit(bananas) were treated with different concentrations of chlorinated water and rinsing numbers, followed by microbiological testing. The fruits were immersed at different concentrations of chlorinated water(0 ppm, 50 ppm, and 100 ppm) and durations(3 min and 5 min), and were then rinsed with tap water(one time, two times, or three times). The total viable cell counts of both the strawberries and bananas ranged from $10^3$ CFU/g to $10^4$ CFU/g, and coliform levels ranged from $10^2$ CFU/g to $10^3$ CFU/g. As the chlorine concentration, immersion time, and rinsing number increased, anti-microbiological activity increased. The largest microbial reduction was shown with immersion for 5 min in 100 ppm chlorinated water and three rinsings. In the strawberries, this treatment reduced the initial population of total viable cells and coliforms by 3.29 log CFU/g and to an undetectable level, respectively, no total viable cells or coliforms were detected on the banana surface following this treatment. However, after a sterilization treatment with immersion for 5 min in 50 ppm chlorinated water and three rinsings, the total viable cell counts and coliform counts of the strawberries and bananas decreased to acceptable levels, based on the microbiological standards for ready-to-eat foods. Overall, it was shown that the sterilization treatment of 50 ppm chlorinated water, soaking for 5 min, and three rinsings provided an effective reduction in surface microbes, and enhanced the microbiological safety of the fruit.

Behaviors of LAS in Reactions with Free Chlorine (鹽素와 反應에서 LAS의 擧動에 관한 연구)

  • Kim, Hea-tae;Lee, Hwan;Lee, Yoon-jin;Nam, Sang-ho
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.106-114
    • /
    • 1997
  • When surfactants meet chlorine bleaches not only in the washing drums but also through the whole path from the stream to the river, it is not difficult to expect that they produce the harmful substances like DBPs. Furthermore considering wastewater that is contaminated by surfactants is used to discharge into drinking water sources via sewer system, it also can be imagined that residual surfactants would contribute to the some extent of DBPs' formation during chlorine disinfection in water treatment plants. Although the main behavior observed was the formation of chloroform during the reaction of LAS with free chlorine, the other manifest behaviors like the trends of pH, MBAS, free chlorine, the mole concentration of benzene ring and etc. were also investigated.

  • PDF